اثر تابش مرحله‌ای نور UV-C روی برخی پارامترهای کیفی و فعالیت آنتی‌اکسیدانی میوه توت‌فرنگی رقم پاروس در دوره انبارمانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی،دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

3 گروه علوم باغبانی دانشکده کشاورزی، دانشگاه بین المللی امام خمینی، قزوین، ایران

4 بخش تحقیقات آفتکش ها، موسسه تحقیقات گیاهپزشکی کشور، سازمان تحقیقات،آموزش و ترویج کشاورزی،تهران، ایران

چکیده

این پژوهش با هدف بررسی کاربرد مرحله‌ای نور UV-C روی برخی ویژگی‌های کیفی و فیتوشیمیایی میوه توت فرنگی رقم پاروس طی دوره انبار 14 روزه در دمای 4 درجه سلسیوس و رطوبت نسبی 90-85 درصد انجام گرفت. این آزمایش در سال 1401 و به صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو فاکتور انجام شد. فاکتور اول نور UV-C (شاهد، بدون تابش UV-C)، تک مرحله‌ای، دو مرحله‌ای و چند مرحله‌ای با شدت4 کیلو ژول یر متر‌مربع(، و فاکتور دوم دوره انباری (صفر، 7 و 14 روز) بود. نتایج نشان داد که در پایان دوره انبارداری، میزان کاهش وزن و پوسیدگی در تیمار تابش چند مرحله‌ای UV-C به ترتیب 17/55 درصد و 73/72 بود. همچنین، این تیمار توانست سفتی و مقدار اسیدیته قابل تیتراسیون را به ترتیب 148 و 64 درصد بهتر از تیمار شاهد حفظ کند. بین میزان پی اچ تیمارهای UV-C در پایان انبارداری تفاوت معنی داری وجود نداشت. علاوه بر این، در پایان دوره انبارداری تیمار چند مرحله‌ای UV-C مقدار ویتامین ث (65/61 درصد)، محتوای فنل کل (44/49 درصد) و فعالیت آنتی اکسیدانی (92/22 درصد) بیشتری را نسبت به تیمار شاهد نشان داد. در تیمار تابش تک مرحله‌ای UV-C میزان محتوای فلاونوئید و آنتوسیانین کل به‌ترتیب 51 و 111 درصد بیشتر از تیمار شاهد در پایان انبارداری بود. تابش UV-C سبب کاهش مقدار L* شد، اما این کاهش در تیمار چند مرحله‌ای کمتر بود. همچنین، تحت تیمار UV-C افزایش میزان a* و زاویه هیو مشاهده شد که میزان این افزایش در تیمار چند مرحله‌ای بیشتر از سایر تیمارها بود. در مجموع، تابش چند مرحله‌ای UV-C بیشترین تأثیر را در افزایش ترکیب‌های زیست فعال و حفظ کیفیت میوه توت‌فرنگی نشان داد. تیمار دو مرحله‌ای UV-C نیز اثرات مثبت بیشتری نسبت به تیمار تک مرحله‌ای داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of staged ultraviolet C radiation on some qualitative parameters and antioxidant activity of strawberry fruits cv. Paros during storage period

نویسندگان [English]

  • Mehnoosh Hashemi 1
  • Mohammad Sayyari 2
  • Morteza Soleimani Aghdam 3
  • Ali Azizi 1
  • Vahideh Mahdavi 4
1 Department of Horticultural Sciences, Faculty of Agricultural, Bu-Ali Sina University, Hamedan,Iran.
2 Department of Horticultural Sciences, Faculty of Agriculture, Bu-Ali Sina University, Hamedan , Iran
3 Department of Horticulture, Faculty of Agriculture, Imam Khomeini International University, Qazvin, Iran
4 Pesticide Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, Iran
چکیده [English]

This study aimed to investigate the staged application of ultraviolet C radiation (UV-CR) on some qualitative and phytochemical characteristics of strawberry fruit cv. 'Paros' for a 14-day storage period at 4°C and 85-90% relative humidity. The experiment was conducted in 2022 as a factorial based on a completely randomized design (CRD) with two main factors: the staged application of UV-CR at an intensity of 4 kJ/m² (a single stage, a double stage, multiple stages, and control) as well as the duration of storage (0, 7, and 14 days). At the end of the 14-day storage period, the multiple stages of UV-CR reduced fruit weight (55.17%) and fruit decay (72.73%). Furthermore, the multiple stages of UV-CR, as compared to the control, significantly maintained fruit’s firmness (148%), titratable acidity (64%), vitamin C (61.65%), total phenolic content (49.44%), and antioxidant activity (22.92%). In addition, no significant difference was found between UV-CR treatments in terms of the pH level at the end of storage. Compared to the control, the single stage of UV-CR increased total flavonoid (51%) and anthocyanin (111%). Moreover, UV-CR remarkably reduced the value of L* in comparison to the multiple stages of UV-CR. Besides, the multiple stages of UV-CR increased the value of a* and hue angle, and also significantly enhanced bioactive compounds and maintained the quality of strawberries, as compared to the two other stages of UV-CR (i.e., single and double stages of UV-CR).

کلیدواژه‌ها [English]

  • Anthocyanin
  • Decay
  • Firmness
  • Storage life
  • Total phenol

Extended Abstract

Introduction

     Strawberry (Fragaria × ananassa) is widely consumed because of its outstanding organoleptic characteristics, bioactive compound, and antioxidant activity. However, its postharvest life is short due to some factors such as relatively high metabolic activity, sensitivity to fungal decay, and susceptibility to water loss. In addition, it is susceptible to mechanical injuries, resulted from its soft texture and lack of a protective rind. Ultraviolet-C radiation (UV-CR) is generally considered as a safe, effective, and economical method to maintain the postharvest’s quality of fruit and vegetables during cold storage and shelf life. The low-dose of UV-CR has been previously reported to be effective on delaying senescence, inducing resistance to pathogens, maintaining fruit flavor, and prolonging the length of time at which fruit can be qualitatively stored. The aim of this study was to investigate the effect of staged application of UV-CR on: 1) evaluating antioxidants’ activity, 2) controlling fruit’s decay, and 3) maintaining quality of strawberry’s fruit at a 14- day storage period. 

 

Materials and Methods   

    First, strawberry (Fragaria × ananassa cv. Paros) was harvested at a commercial ripeness time (the time at which 80% of the fruit surface turning into red), from an organic farm in Kurdistan Province and transported to the Horticultural Science Laboratory of Bu Ali Sina University. Afterwards, the fruit of same size and weight, without any defect, was selected and subjected to different applications of UV-CR treatments. The fruit, as control, didn't receive any light radiation. Fruit was then packed in a polyethylene box and stored at 4°C and 85–90% relative humidity for a 14-day storage period. The single stage of UV-CR (4kJ/m²) was applied at the beginning of the experiment, the double stage of UV-CR (2 kJ/m²) on 0 and fourth day of storage, and the multiple stages of UV-CR (1 kJ/m²) on 0, second, fourth, and sixth day of storage. The content of some bioactive compounds was measured on 0, seventh, and 14th day of storage. Furthermore, to evaluate precisely the effect of staged application of UV-CR on the qualitative characteristics and bioactive compounds of strawberry, the fruit was retained inside a morgue until the 14th day of the storage. The qualitative and phytochemical traits were measured on 0, seventh, and 14th day of storage. 

Results and Discussion   

    The results of this study showed that the multiple stages of UV-CR had the remarkable effect on maintaining the quality of strawberry at the end of the 14-day storage period, as compared to other UV-CR treatments. Furthermore, the multiple stages of UV-CR not only reduced fruitweight (55.17%) and decay (72.73%), but also maintained fruit firmness (148%) and titratable acidity (64%). Although no significant difference was found between UV-CR treatments in terms of fruit’s pH level toward the end of storage, the pH value of all treated fruit was higher than that in the control. Toward to the end of the storage period, the multiple stages of UV-CR remarkably increased the content of bioactive compounds. Moreover, the multiple stages of UV-CR also raised vitamin C (by 61.65%), total phenol (by 49.44%), and antioxidant activity (by 22.92%). The single stage of UV-CR also was effective on enhancing the content of specific phytochemicals. For example, on the 14th day of storage, it increased the total flavonoid (51%) and anthocyanin (111%). In conclusion, the multiple stages of UV-CR had the most effect on improving bioactive compounds and preserving the quality of strawberry fruit during storage. Additionally, the double stage of UV-CR acted better than single stage of UV-CR during this experiment.  

Conclusion

     Our results showed that the fruit treated with different stages of UV-CR had the highest titratable acidity, vitamin C, total phenol, and fruit firmness, but the lowest weight loss, total soluble solids, TSS/TA, and decay, as compared to the control. Taken together, our findings proved the efficiency of multiple stage of UV-CR on maintaining the quality of strawberry during storage. Moreover, considering the hormetic property of UV-C radiation during storage time, and its beneficial effects on horticultural products, multiple stage application of UV-C radiation throughout the storage period can amplify its effects. However, additional research is necessary to identify the molecular and enzymatic mechanisms that are involved in this process.

منابع

عسگریان، زهرا سادات؛ سیاری، محمد و اثنی عشری، محمود (1398). اثر پرتودهی با نور UV-C بر کاهش سرمازدگی میوه خرمالو رقم کاشان طی انبارمانی. مجله تولیدات گیاهی، 42(2)، 181-194.
حسینی فرهی، مهدی؛ رادی، محسن؛ باقری، فرود و جمشیدی، احسان (1397). بررسی ویژگی‌های کیفی و ارگانولپتیکی پس از برداشت میوه توت‌فرنگی با کاربرد ژل آلوئه‌ورا، استیک اسید و پرتو فرابنفش بی. مجله علوم و فنون باغبانی ایران، 19(1)، 99-114.
محمدی، امیر علی؛ شهابیان، مهرداد؛ رمضان‌پور، محمودرضا و حاجی‌وند، شکراله (1401). بررسی اثرات نیترات کلسیم و فسفیت پتاسیم بر عمر انباری و برخی صفات کیفی پرتقال تامسون ناول. تولیدات گیاهی، 45(2)، 181-192.
نصیر زاده، م. (1389). اثر کاربرد پس از برداشت پلی‌آمین‌ها بر کاهش سرمازدگی، رسیدن میوه و افزایش ماندگاری میوه گوجه فرنگی. (پایان نامه کارشناسی ارشد. دانشگاه شیراز، ایران).
 
RERERENCES
Abdipour, M., Hosseinifarahi, M. & Naseri, N. (2019). Combination method of UV-B and UV-C prevents post-harvest decay and improves organoleptic quality of peach fruit. Scientia Horticulturae, 256, 108564. http://dx.doi.org/10.1016/j.scienta.2019.108564
Abdipour, M., Sadat Malekhossini, P., Hosseinifarahi, M. & Radi, M. (2020). Integration of UV irradiation and chitosan coating: A powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Scientia Horticulturae, 264, 109197. http://dx.doi.org/10.1016/j.scienta.2020.109197
Ali, L. M., Ahmed, A. E.  R.A. E. R., Hasan, H.E S., Suliman, A. E.  R. E., & Saleh, S.S. (2022). Quality characteristics of strawberry fruit following a combined treatment of laser sterilization and guava leaf-based chitosan nanoparticle coating. Chemical and Biological Technologies in Agriculture, 9, 80 . https://doi.org/10.1186/s40538-022-00343-x
Alothman, M., Bhat, R. & Karim, A. A. (2009a). Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science & Technology, 20(5), 201–212. http://dx.doi.org/10.1016/j.tifs.2009.02.003
Alothman, M., Bhat, R. & Karim, A. A. (2009b). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 10(4), 512–516. http://dx.doi.org/10.1016/j.ifset.2009.03.004
Amatori, S., Mazzoni, L., Alvarez-Suarez, J. M., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T. Y. … & Battino, M. (2016). Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cells. Scientific Reports, 6(1), 30917. http://dx.doi.org/10.1038/srep30917
Amiri, A., Mortazavi, S. M. H., Ramezanian, A., Mahmoodi Sourestani, M., Mottaghipisheh, J., Iriti, M. & Vitalini, S. (2021). Prevention of decay and maintenance of bioactive compounds in strawberry by application of UV-C and essential oils. Journal of Food Measurement and Characterization, 15(6), 5310–5317. https://link.springer.com/article/10.1007/s11694-021-01095-2
Araque, L.C.O., Rodoni, L. M., Darré, M., Ortiz, C. M., Civello, P.M. & Vicente, A. R. (2018). Cyclic low dose UV-C treatments retain strawberry fruit quality more effectively than conventional pre-storage single high fluence applications Enhanced Reader. LWT, 92, 304–311. http://dx.doi.org/10.1016/j.lwt.2018.02.050
Asgareyan, Z. S., Sayyari, M. & Asnaashari, M. (2019). The Effect of UV-C Radiation on Alleviating Chilling Injuries of Persimmon Fruit Cv. Kashan During Cold Storage. Plant Production, 42(2), 181-194. http://dx.doi.org/10.22055/ppd.2019.18805.1367  (In Persian).
Barikloo, H. & Ahmadi, E. (2018). Effect of nanocomposite-based packaging and chitosan coating on the physical, chemical, and mechanical traits of strawberry during storage. Journal of Food Measurement and Characterization, 12(3), 1795–1817. https://link.springer.com/article/10.1007/s11694-018-9795-3
Becerra-Moreno, A., Redondo-Gil, M., Benavides, J., Nair, V., Cisneros-Zevallos, L. & Jacobo-Velázquez, D. A. (2015). Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 6, 837. https://doi.org/10.3389/fpls.2015.00837
Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Bravo, S., García-Alonso, J., Martín-Pozuelo, G., Gómez, V., Santaella, M., Navarro-González, I. & Periago, M.J. (2012). The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International, 49(1), 296–302.  http://dx.doi.org/10.1016/j.foodres.2012.07.018 
Caner, C., Aday, M. S. & Demir, M. (2008). Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging. European Food Research and Technology, 227(6), 1575–1583. http://dx.doi.org/10.1007/s00217-008-0881-3
Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. http://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694411578267719
Cisneros-Zevallos, L., Jacobo-Velázquez, D.  A., Pech, J.C., & Koiwa, H. (2014). Signaling Molecules Involved in the Postharvest Stress Response of Plants: Quality Changes and Synthesis of Secondary Metabolites. In M. Pessarakli (Ed.), Handbook of Plant and Crop Physiology (pp. 259-276, 3rd edition, CRC Press.
Damdam, A., Al-Zahrani, A., Salah, L. & Salama, K. N. (2023). Effect of combining UV-C irradiation and vacuum sealing on the shelf life of fresh strawberries and tomatoes. Journal of Food Science, 88(2), 595–607. http://dx.doi.org/10.1111/1750-3841.16444
Darvishi, S., Fatemi, A. & Davari, K. (2012). Keeping quality of use of fresh “Kurdistan” strawberry by UV-C radiation. World Applied Sciences Journal, 17(7), 826–831.
El Ghaouth, A., Wilson, C. L. & Callahan, A. M. (2003). Induction of chitinase, β-1,3-glucanase, and phenylalanine ammonia lyase in peach fruit by UV-C treatment. Phytopathology, 93(3), 349–355. https://doi.org/10.1094/phyto.2003.93.3.349
Erkan, M., Wang, S. Y. & Wang, C. Y. (2008). Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biology and Technology, 48(2), 163–171. http://dx.doi.org/10.1016/j.postharvbio.2007.09.028
Formica-Oliveira, A. C., Martínez-Hernández, G. B., Díaz-López, V., Artés, F. & Artés-Hernández, F. (2017). Use of postharvest UV-B and UV-C radiation treatments to revalorize broccoli byproducts and edible florets. Innovative Food Science & Emerging Technologies, 43, 77–83. http://dx.doi.org/10.1016/j.ifset.2017.07.036
García, M. A., Ventosa, M., Díaz, R., Falco, S. & Casariego, A. (2014). Effects of Aloe vera coating on postharvest quality of tomato. Fruits, 69(2), 117–126. http://dx.doi.org/10.1051/fruits/2014001
Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. http://dx.doi.org/10.1016/j.plaphy.2010.08.016
Gol, N. B., Chaudhari, M. L. & Rao, T. V. R. (2015). Effect of edible coatings on quality and shelf life of carambola (Averrhoa carambola L.) fruit during storage. Journal of Food Science and Technology, 52(1), 78–91. http://dx.doi.org/10.1007/s13197-013-0988-9
Gonzalez-Aguilar, G. A., Celis, J., Sotelo-Mundo, R. R., De La Rosa, L. A., Rodrigo-Garcia, J. & Alvarez-Parrilla, E. (2008). Physiological and biochemical changes of different fresh-cut mango cultivars stored at 5 °C. International Journal of Food Science & Technology, 43(1), 91–101. http://dx.doi.org/10.1111/j.1365-2621.2006.01394.x
González-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M. A., Gardea, A.  A. & Ayala-Zavala, J.F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72(3), S197–S202. http://dx.doi.org/10.1111/j.1750-3841.2007.00295.x
González-Aguilar, G. A., Zavaleta-Gatica, R. & Tiznado-Hernández, M. E. (2007). Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1), 108–116. http://dx.doi.org/10.1016/j.postharvbio.2007.01.012
Gumede, M., Mditshwa, A., Tesfay, S. Z., Magwaza, L. S. & Mbili, N. C. (2020). The effect of ozone and UV-C irradiation on strawberry postharvest quality. Acta Horticulturae, 1275, 15–22. http://dx.doi.org/10.13140/RG.2.2.22753.35685
Hakguder Taze, B. & Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233, 370–377. https://doi.org/10.1016/j.scienta.2018.02.012
Han, C., Zhao, Y., Leonard, S. W. & Traber, M.G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33(1), 67–78. http://dx.doi.org/10.1016/j.postharvbio.2004.01.008
Hosseini, F.S., Akhavan, H.R., Maghsoudi, H., Hajimohammadi-Farimani, R. & Balvardi, M. (2019). Effects of a rotational UV-C irradiation system and packaging on the shelf life of fresh pistachio. Journal of the Science of Food and Agriculture, 99(11), 5229–5238. http://dx.doi.org/10.1002/jsfa.9763
Hosseinifarahi, M., Radi, M., Bagheri, F. & Jamshidi, E. (2018). Evaluation of postharvest quality and organoleptic characteristics of Strawberry with application of Aloe vera gel, acetic acid and UV-B irradiation. Iranian Journal of Horticultural Science and Technology, 19(1), 99-114. https://dor.isc.ac/dor/20.1001.1.16807154.1397.19.1.5.5 (In Persian).
Hu, X., Chen, Y., Wu, X., Liu, W., Jing, X., Liu, Y., Yan, J., Liu, S. & Qin, W. (2022). Combination of calcium lactate impregnation with UV-C irradiation maintains quality and improves antioxidant capacity of fresh-cut kiwifruit slices. Food Chemistry: X, 14, 100329. http://dx.doi.org/10.1016/j.fochx.2022.100329
Idzwana, M. I. N., Chou, K. Sen, Shah, R. M. & Soh, N. C. (2020). The effect of ultraviolet light treatment in extend shelf life and preserve the quality of strawberry (Fragaria x ananassa) cv. Festival. International Journal on Food, Agriculture and Natural Resources, 1(1), 15–18. http://dx.doi.org/10.46676/ij-fanres.v1i1.4
Kataoka, I., Sugiyama, A. & Beppu, K. (2005). Involvement of UV rays in sweet cherry fruit coloration during maturation. Acta Horticulturae, 667, 461–466. http://dx.doi.org/10.17660/ActaHortic.2005.667.66
Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T. & Mao, L. (2014). ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biology and Technology, 90, 56–62. http://dx.doi.org/10.1016/j.postharvbio.2013.12.006
Li, M., Li, X., Han, C., Ji, N., Jin, P. & Zheng, Y. (2019). UV-C treatment maintains quality and enhances antioxidant capacity of fresh-cut strawberries. Postharvest Biology and Technology, 156, 110945. http://dx.doi.org/10.1016/j.postharvbio.2019.110945
Lichtscheidl‐Schultz, I. (1985). Effects of UV-C and UV-B on cytomorphology and water permeability of inner epidermal cells of Allium cepa. Physiologia Plantarum, 63(3), 269–276. https://doi.org/10.1111/j.1399-3054.1985.tb04264.x
Lin, Y., Huang, R., Sun, X., Yu, X., Xiao, Y., Wang, L., Hu, W. & Zhong, T. (2021). The p-Anisaldehyde/β-cyclodextrin inclusion complexes as fumigation agent for control of postharvest decay and quality of strawberry. Food Control, 130, 108346. https://doi.org/10.1016/j.foodcont.2021.108346
Liu, C. hong, Cai, L. yun, Lu, X. ying, Han, X. xu & Ying, T. jin. (2012). Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. Journal of Integrative Agriculture, 11(1), 159–165. http://dx.doi.org/10.1016/S1671-2927(12)60794-9
Liu, K., Yuan, C., Chen, Y., Li, H. & Liu, J. (2014). Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45–53. https://doi.org/10.1016/j.scienta.2014.06.027
Lu, Y., Li, D., Li, L., Belwal, T., Xu, Y., Lin, X., Duan, Z. & Luo, Z. (2020). Effects of elevated CO2 on pigment metabolism of postharvest mandarin fruit for degreening. Food Chemistry, 318, 126462. http://dx.doi.org/10.1016/j.foodchem.2020.126462
Maharaj, R., Arul, J. & Nadeau, P. (2014). UV-C irradiation effects on levels of enzymic and non-enzymic phytochemicals in tomato. Innovative Food Science & Emerging Technologies, 21, 99–106. https://doi.org/10.1016/j.ifset.2013.10.001
Maurer, L. H., Bersch, A. M., Santos, R. O., Trindade, S. C., Costa, E. L., Peres, M. M., … & Emanuelli, T. (2017). Postharvest UV-C irradiation stimulates the non-enzymatic and enzymatic antioxidant system of ‘Isabel’ hybrid grapes (Vitis labrusca × Vitis vinifera L.). Food Research International, 102, 738–747. https://doi.org/10.1016/j.foodres.2017.09.053
Mercier, J., Baka, M., Reddy, B., Corcuff, R. & Arul, J. (2001). Shortwave ultraviolet irradiation for control of decay caused by Botrytis cinerea in bell pepper: Induced resistance and germicidal effects. Journal of the American Society for Horticultural Science, 126(1), 128–133. http://dx.doi.org/10.21273/JASHS.126.1.128
Mohammadi, A., Shahabian, M., Ramezanpour, M. R. & Hajivand, S. (2022). Evaluation of the Effects of Calcium Nitrate and Potassium Phosphite on the Storage Life and Some Quality Traits of Thomson Navel Orange. Plant Productions, 45(2), 181–192. https://doi.org/10.22055/ppd.2021.35965.1959 (In Persian).
Muhammad, I., Ashiru, S., Ibrahim, I., Kanoma, A. I., Sani, I. & Garba, S. (2014). Effect of ripening stage on vitamin C content in selected fruits. International Journal of Agriculture Forestry and Fisheries, 2(3), 60–65.
Nadim, Z., Ahmadi, E., Sarikhani, H. & Amiri Chayjan, R. (2015). Effect of methylcellulose-based edible coating on strawberry fruit’s quality maintenance during storage. Journal of Food Processing and Preservation, 39(1), 80–90. http://dx.doi.org/10.1111/jfpp.12227
Nasirzadeh, M. (2010). Influence of Postharvest Application of Polyamines on Reducing Chilling Injury, Ripening and Improving the Shelf Life of Tomato (Lycopersicon esculentum L.) Fruit. (M. Sc. Thesis. Faculty of Agriculture, Shiraz University, Iran).(In Persian).
Nigro, F., Ippolito, A. & Lima, G. (1998). Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13(3), 171–181. https://doi.org/10.1016/S0925-5214%2898%2900009-X
Ou, C., Liu, Y., Wang, W. & Dong, D. (2016). Integration of UV-C with antagonistic yeast treatment for controlling post-harvest disease and maintaining fruit quality of Ananas comosus. BioControl, 61(5), 591–603. https://doi.org/10.1007/s10526-016-9740-5
Pan, Y. G., & Zu, H. (2012). Effect of UV-C radiation on the quality of fresh-cut pineapples. Procedia Engineering, 37, 113–119. http://dx.doi.org/10.1016/j.proeng.2012.04.212
Perkins-Veazie, P., Collins, J. K. & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280–285. http://dx.doi.org/10.1016/j.postharvbio.2007.08.002
Petriccione, M., Mastrobuoni, F., Pasquariello, M. S., Zampella, L., Nobis, E., Capriolo, G. & Scortichini, M. (2015). Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods, 4(4), 501–523. https://doi.org/10.3390/foods4040501
Petrov, V., Hille, J., Mueller-Roeber, B. & Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6, 1-16, 125003. https://doi.org/10.3389/fpls.2015.00069
Prajapati, U., Asrey, R., Varghese, E., Singh, A. K. & Pal Singh, M. (2021). Effects of postharvest ultraviolet-C treatment on shelf-life and quality of bitter gourd fruit during storage. Food Packaging and Shelf Life, 28, 1-8,  100665. http://dx.doi.org/10.1016/j.fpsl.2021.100665
Promyou, S., & Supapvanich, S. (2012). Effect of ultraviolet-C (UV-C) illumination on postharvest quality and bioactive compounds in yellow bell pepper fruit (Capsicum annuum L.) during storage. African Journal of Agricultural Research, 7(28), 4084–4096. http://dx.doi.org/10.5897/AJAR12.242
Rabelo, M. C., Bang, W. Y., Nair, V., Alves, R. E., Jacobo-Velázquez, D. A., Sreedharan, S., de Miranda, M. R. A. & Cisneros-Zevallos, L. (2020). UVC light modulates vitamin C and phenolic biosynthesis in acerola fruit: role of increased mitochondria activity and ROS production. Scientific Reports, 10(1), 21972. https://doi.org/10.1038/s41598-020-78948-1
Rostami, M., Shokouhian, A. & Mohebodini, M. (2022). Effect of humic acid, nitrogen concentrations and application method on the morphological, yield and biochemical characteristics of strawberry “Paros.” International Journal of Fruit Science, 22(1), 203–214. http://dx.doi.org/10.1080/15538362.2021.2022566
Santin, M., Lucini, L., Castagna, A., Chiodelli, G., Hauser, M. T. & Ranieri, A. (2018). Post-harvest UV-B radiation modulates metabolite profile in peach fruit. Postharvest Biology and Technology, 139, 127–134. https://doi.org/10.1016/j.postharvbio.2018.02.001
Sari, L. K., Setha, S. & Naradisorn, M. (2016). Effect of UV-C irradiation on postharvest quality of ‘Phulae’ pineapple. Scientia Horticulturae, 213, 314–320. http://dx.doi.org/10.1016/j.scienta.2016.09.049
Scattino, C., Castagna, A., Neugart, S., Chan, H. M., Schreiner, M., Crisosto, C. H., Tonutti, P. & Ranieri, A. (2014). Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chemistry, 163, 51–60. https://doi.org/10.1016/j.foodchem.2014.04.077
Severo, J., de Oliveira, I. R., Tiecher, A., Chaves, F. C., & Rombaldi, C.V. (2015). Postharvest UV-C treatment increases bioactive, ester volatile compounds and a putative allergenic protein in strawberry. LWT - Food Science and Technology, 64(2), 685–692. http://dx.doi.org/10.1016/j.lwt.2015.06.041
Shama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology, 44(1), 1–8. http://dx.doi.org/10.1016/j.postharvbio.2006.11.004
Shen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D. & Ye, X. (2013). Effect of UV-C treatments on phenolic compounds and antioxidant capacity of minimally processed Satsuma mandarin during refrigerated storage. Postharvest Biology and Technology, 76, 50–57. http://dx.doi.org/10.1016/j.postharvbio.2012.09.006
Sheng, K., Zheng, H., Shui, S. S., Yan, L., Liu, C. & Zheng, L. (2018). Comparison of postharvest UV-B and UV-C treatments on table grape: Changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biology and Technology, 138, 74–81. http://dx.doi.org/10.1016/j.postharvbio.2018.01.002
Singelton, V. L., & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphotungstic-phosphomolybdic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. Doi. 10.5344/ajev.1965.16.3.144
Singh, C., Dhamsaniya, N. K., Kumar, P., Rathod, J. & Dhamsaniya, K. (2022). Effect of ultraviolet-c radiation processing on physical and microbial properties of horticulture produce. The Pharma Innovation Journal, 11(6), 1798–1804.
Sousa-Gallagher, M. J., Mahajan, P. V. & Mezdad, T. (2013). Engineering packaging design accounting for transpiration rate: Model development and validation with strawberries. Journal of Food Engineering, 119(2), 370–376. https://doi.org/10.1016/j.jfoodeng.2013.05.041
Sripong, K., Jitareerat, P. & Uthairatanakij, A. (2019). UV irradiation induces resistance against fruit rot disease and improves the quality of harvested mangosteen. Postharvest Biology and Technology, 149, 187–194. https://doi.org/10.1016/j.postharvbio.2018.12.001
Sturm, K., Koron, D. & Stampar, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry, 83(3), 417–422. http://dx.doi.org/10.1016/S0308-8146(03)00124-9
Tanada-Palmu, P. S., & Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36(2), 199-208. https://doi.org/10.1016/j.postharvbio.2004.12.003
Wang, C. Y., Chen, C. T. & Wang, S. Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117(3), 426–431. http://dx.doi.org/10.1016/j.foodchem.2009.04.037
Wargent, J. J. (2016). UV LEDs in horticulture: From biology to application. Acta Horticulturae, 1134, 25–32. http://dx.doi.org/10.17660/ActaHortic.2016.1134.4
Xu, F. & Liu, S. (2017). Control of postharvest quality in blueberry fruit by combined 1-Methylcyclopropene (1-MCP) and UV-C irradiation. Food and Bioprocess Technology, 10(9), 1695–1703. https://link.springer.com/article/10.1007/s11947-017-1935-y
Yang, J., Li, B., Shi, W., Gong, Z., Chen, L. & Hou, Z. (2018). Transcriptional activation of anthocyanin biosynthesis in developing fruit of blueberries (Vaccinium corymbosum L.) by preharvest and postharvest UV irradiation. Journal of Agricultural and Food Chemistry, 66(42), 10931–10942. http://dx.doi.org/10.1021/acs.jafc.8b03081
Zambrano-Zaragoza, M.L., Quintanar-Guerrero, D., González-Reza, R.M., Cornejo-Villegas, M.A., Leyva-Gómez, G. & Urbán-Morlán, Z. (2021). Effects of UV-C and edible nano-coating as a combined strategy to preserve fresh-cut cucumber. Polymers, 13(21), 3705. http://dx.doi.org/10.3390/polym13213705
Zhang, W., Jiang, H., Cao, J. & Jiang, W. (2021a). UV-C treatment controls brown rot in postharvest nectarine by regulating ROS metabolism and anthocyanin synthesis. Postharvest Biology and Technology, 180, 111613. http://dx.doi.org/10.1016/j.postharvbio.2021.111613
Zhang, Q., Yang, W., Liu, J., Liu, H., L, Z., Zhang, C., Chen, D. & Jiao, Z. (2021b). Postharvest UV-C irradiation increased the flavonoids and anthocyanins accumulation, phenylpropanoid pathway gene expression, and antioxidant activity in sweet cherries (Prunus avium L.). Postharvest Biology and Technology, 175, 111490. http://dx.doi.org/10.1016/j.postharvbio.2021.111490
Zhang, Y., Li, S., Deng, M., Gui, R., Liu, Y., Chen, X., Lin, Y., Li, M., Wang, Y., He, W., Chen, Q., Zhang, Y., Luo, Y., Wang, X. & Tang, H. (2022). Blue light combined with salicylic acid treatment maintained the postharvest quality of strawberry fruit during refrigerated storage. Food Chemistry: X, 15, 100384.
Zhao, H., Wang, B., Cui, K., Cao, J. & Jiang, W. (2019). Improving postharvest quality and antioxidant capacity of sweet cherry fruit by storage at near-freezing temperature. Scientia Horticulturae, 246, 68–78.
Zhou, Z., Zuber, S., Cantergiani, F., Sampers, I., Devlieghere, F. & Uyttendaele, M. (2018). Inactivation of foodborne pathogens and their surrogates on fresh and frozen strawberries using gaseous ozone. Frontiers in Sustainable Food Systems, 2, 399284.