Aazami, M. A., Asghari-Aruq, M., Hassanpouraghdam, M. B., Ercisli, S., Baron, M., & Sochor, J. (2021). Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants, 10(9), 1877. https://doi.org/10.3390/plants10091877
Ahmad, B., Zaid, A., Sadiq, Y., Bashir, S., Wani, S.H. (2019). Role of Selective Exogenous Elicitors in Plant Responses to Abiotic Stress Tolerance. In M. Hasanuzzaman, K. Hakeem, K. Nahar and H. Alharby (Eds.) Plant Abiotic Stress Tolerance (pp. 273-290). Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_12
Arshad, M. A., Akhtar, G., Rajwana, I. A., Ullah, S., Hussain, M. B., Amin, M., & Ahmed, I. (2022). Foliar application of chitosan improves plant biomass, physiological and biochemical attributes of rose (Gruss-an-Teplitz). Kuwait Journal of Science, 49(2), 1-14. http://dx.doi.org/10.48129/kjs.11655
Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2), 388. http://dx.doi.org/10.3390/plants10020388
Bakhoum, G. S., Sadak, M. S., & Badr, E. A. E. M. (2020). Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre, 44, 1-11. https://doi.org/10.1186/s42269-020-00343-7
Balal, R. M., Shahid, M. A., Javaid, M. M., Iqbal, Z., Liu, G. D., Zotarelli, L., & Khan, N. (2017). Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiologiae Plantarum, 39, 1-15. https://doi.org/10.1007/s11738-016-2335-z
Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Bergmeyer, N. (1970). Methoden der Enzymatischen Analyse, vol 1. AkademieVerlag, Berlin, pp. 636–647.
Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
Analytical Biochemistry, 72(1-2), 248-254. https://
doi.org/10. 1016/0003-2697(76)90527-3
Chatelain, P. G., Pintado, M. E., & Vasconcelos, M. W. (2014). Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in
Phaseolus vulgaris.
Plant Science, 215, 134-140. https://
doi.org/10.1016/0003-2697(76)90527-3
Comis, D. B., Tamayo, D. M., & Alonso, J. M. (2001). Determination of monosaccharides in cider by reversed-phase liquid chromatography. Analytica Chimica Acta, 436(1), 173-180. https://doi. org/10.1016/S0003-2670(01)00889-3
Eichhorn, K.W., & Lorenz, D.H. (1977) Phenological development stages of the grapevine.
Nachrichtenblatt Dtsch Pflanzenschutzd. 29,119–20.
Google Scholar
El-Miniawy, S. M., Ragab, M. E., Youssef, S. M., & Metwally, A. A. (2013). Response of strawberry plants to foliar spraying of chitosan. Research Journal of Agriculture and Biological Sciences, 9(6), 366-372. https://www.cabdirect.org/cabdirect/abstract/20143098846
Ershadi, A., Karimi, R., & Mahdei, K. N. (2016). Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta Physiologiae Plantarum, 38, 1-10. https://doi.org/10.1007/s11738-015-2021-6
Eshghi, S., Karimi, R., Shiri, A., Karami, M., & Moradi, M. (2022). Effects of polysaccharide-based coatings on postharvest storage life of grape: Measuring the changes in nutritional, antioxidant and phenolic compounds. Journal of Food Measurement and Characterization, 16(2), 1159-1170. https://doi.org/10.1007/s11694-021-01275-0
Food and Agriculture Organization (2011) Statistical Yearbook. FAOSTAT, New York. http://www. fao.org/faostat/en/#data/QC/metadata
Geng, W., Li, Z., Hassan, M. J., & Peng, Y. (2020). Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology, 20, 1-15. https://doi.org/10.1007/s11694-021-01275-0
Hashim, N. F. A., Ahmad, A., & Bordoh, P. K. (2018). Effect of chitosan coating on chilling injury, antioxidant status and postharvest quality of Japanese cucumber during cold storage.
Sains Malays, 47(2), 287-294.
http://dx.doi.org/10.17576/jsm-2018-4702-10
Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in
Catharanthus roseus (L.) G. Don.
Plant Physiology and Biochemistry, 162, 291-300.
https://doi.org/10.1016/j. plaphy.2021.03.004
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi. org/10.1016/0003-9861(68)90654-1
Herzog, V., Fahimi, HD. (1973). Determination of the activity of peroxidase.
Analytica Chimica Acta, 55, 554–562. DOI: https://
10.1016/0003-2697(73)90144-9
Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25, 313-326. https://doi.org/10.1007/s12298-018-0633-1
Hosseini, M. S., Zahedi, S. M., Abadía, J., & Karimi, M. (2018). Effects of postharvest treatments with chitosan and putrescine to maintain quality and extend shelf‐life of two banana cultivars.
Food science & nutrition, 6(5), 1328-1337.
https://doi.org/10.1002/fsn3.662
Jiao, Z., Li, Y., Li, J., Xu, X., Li, H., Lu, D., & Wang, J. (2012). Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Research, 55, 293-301. https://doi.org/10.1007/s11540-012-9223-8
Kahromi, S., & Khara, J. (2021). Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi.
Journal of the Science of Food and Agriculture,
101(9), 3898-3907.
https://doi.org/10.1002/jsfa.11030
Karla, Y. P. (1998).
Handbook of reference methods for plant analysis. CRC Press Inc Boca Raton, FL165170.
Google Scholar
Karimi, R. (2019). Spring frost tolerance increase in Sultana grapevine by early season application of calcium sulfate and zinc sulfate. Journal of Plant Nutrition, 42(19), 2666-2681. https://doi. org/10.1080/01904167.2019.1659343
Li, Z., Zhang, Y., Zhang, X., Merewitz, E., Peng, Y., Ma, X., & Yan, Y. (2017). Metabolic pathways regulated by chitosan contributing to drought resistance in white clover.
Journal of Proteome Research, 16(8), 3039-3052.
https://doi.org/10.1021/acs.jproteome.7b00334
Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: –pigments of photosynthetic biomembrances. In H. Sies, R. Douce, N. Clowick & N. Kaplan (Eds.),
Methods in Enzymology Plant Cell Membranes, 148 (pp. 350-381). Academic Press, San Diego (CA).
https://doi.org/10.1016/0076-6879(87)48036-1
Liu, J., Gai, L., & Zong, H. (2021). Foliage application of chitosan alleviates the adverse effects of cadmium stress in wheat seedlings (
Triticum aestivum L.).
Plant Physiology and Biochemistry, 164, 115-121.
https://doi.org/10.1016/j.plaphy.2021.04.038
Mohamed, S. (2018). Effect of chitosan, putrescine and irrigation levels on the drought tolerance of sour orange seedlings.
Egyptian Journal of Horticulture, 45(2), 257-273 https://doi
10.21608/ejoh.2018. 3063.1050
Molaei, S., Soleimani, A., Rabiei, V., & Razavi, F. (2021). Impact of chitosan in combination with potassium sorbate treatment on chilling injury and quality attributes of pomegranate fruit during cold storage.
Journal of Food Biochemistry, 45(4), e13633.
https://doi.org/10.1111/jfbc.13633
Muley, A. B., Shingote, P. R., Patil, A. P., Dalvi, S. G., & Suprasanna, P. (2019). Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (
Solanum tuberosum L.).
Carbohydrate Polymers, 210, 289-301.
https://doi.org/10.1016/j.carbpol. 2019.01.056
Qu, D. Y., Gu, W. R., Zhang, L. G., Li, C. F., Chen, X. C., Li, J., & Wei, S. (2019). Role of chitosan in the regulation of the growth, antioxidant system and photosynthetic characteristics of maize seedlings under cadmium stress.
Russian Journal of Plant Physiology, 66, 140-151.
https://doi.org/10.1134/ S102144371901014X
Quitadamo, F., De Simone, V., Beleggia, R., & Trono, D. (2021). Chitosan-induced activation of the antioxidant defense system counteracts the adverse effects of salinity in durum wheat.
Plants, 10(7), 1365.
https://doi.org/10.3390/plants10071365
Salachna, P., & Zawadzińska, A. (2015). Comparison of morphological traits and mineral content in Eucomis autumnalis (Mill.) Chitt. plants obtained from bulbs treated with fungicides and coated with natural polysaccharides.
Journal of Ecological Engineering, 16(2), 136-142. https://doi.org/
10.12911/ 22998993/1868
Shehzad, M. A., Nawaz, F., Ahmad, F., Ahmad, N., & Masood, S. (2020). Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (
Helianthus annuus L.) under drought stress.
Ecotoxicology and Environmental Safety, 187, 109841.
https://doi.org/10.1016/j.ecoenv.2019.109841
Singh, R. K., Martins, V., Soares, B., Castro, I., & Falco, V. (2020). Chitosan application in vineyards induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes.
International Journal of Molecular Sciences, 21(1), 306.
https://doi.org/10.3390/ijms21010306
Suarez-Fernandez, M., Marhuenda-Egea, F. C., Lopez-Moya, F., Arnao, M. B., Cabrera-Escribano, F., Nueda, M. J., & Lopez-Llorca, L. V. (2020). Chitosan induces plant hormones and defenses in tomato root exudates.
Frontiers in Plant Science, 11, 572087.
https://doi.org/10.3389/fpls.2020.572087
Velikova, V., & Loreto, F. (2005). On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress.
Plant, Cell & Environment, 28(3), 318-327.
https://doi.org/10.1111/j.1365-3040.2004.01314.x
Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products.
Journal of Agricultural and Food Chemistry, 46(10), 4113-4117.
https://doi.org/10.1021/jf9801973
Vosnjak, M., Sircelj, H., Hudina, M., & Usenik, V. (2021). Response of chloroplast pigments, sugars and phenolics of sweet cherry leaves to chilling.
Scientific Reports, 11(1), 7210.
https://doi.org/10.1038/ s41598-021-86732-y
Wang, A., Li, J., Al-Huqail, A. A., Al-Harbi, M. S., Ali, E. F., Wang, J., & Eissa, M. A. (2021). Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants.
Nanomaterials, 11(10), 2670.
https://doi.org/10.3390/nano11102670
Wang, D., & Gao, Z. (2016). Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (
Prunus persica).
Frontiers in Plant Science, 6, 170443.
https://doi.org/10.3389/fpls.2015.01248
Wang, H., & Dami, I. E. (2020). Evaluation of budbreak-delaying products to avoid spring frost injury in grapevines.
American Journal of Enology and Viticulture, 71
(3), 181-190.
https://doi.org/10.5344/ ajev.2020.19074
Webster, D. E. & Ebdon, J. S. (2005) Effects of nitrogen and potassium fertilization on perennial raygrass cold tolerance during deacclimation in late winter and early spring.
Hort Science, 40, 842-849. https://doi.org/
10.21273/HORTSCI.40.3.842
Xu, D., Li, H., Lin, L., Liao, M. A., Deng, Q., Wang, J., & Xia, H. (2020). Effects of carboxymethyl chitosan on the growth and nutrient uptake in Prunus davidiana seedlings. Physiology and Molecular Biology of Plants, 26, 661-668. https://doi.org/10.1007/s12298-020-00791-5
Yemm, E. W., & Willis, A. (1954). The estimation of carbohydrates in plant extracts by anthrone.
Biochemical Journal, 57(3), 508. https://doi.org/
10.1042/bj0570508
Zhang, G., Wang, Y., Wu, K., Zhang, Q., Feng, Y., Miao, Y., & Yan, Z. (2021). Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7(10), 342. https://doi.org /10.3390/horticulturae7100342