اثر محلول‌پاشی کیتوزان بر فیزیولوژی تحمل به سرما و زمان شکفتن جوانه در انگور یاقوتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران

چکیده

پژوهش حاضر با هدف بررسی اثر محلول‏پاشی کیتوزان (غلظت‏های صفر ، 5، 10 و 20 گرم در لیتر) در مرحله نوک­پنبه­ای (اواخر اسفند) بر زمان شکفتن جوانه و شاخص­های فیزیولوژیکی مرتبط با تحمل به سرمای بهاره انگور یاقوتی در سال­های 1400 و 1401 انجام گرفت. بر اساس نتایج شکفتن جوانه در تاک­های تیمار شده با غلظت 10 گرم در لیتر در مقایسه با تاک­­های شاهد تا 6 روز به تاخیر افتاد. کاربرد کیتوزان به ویژه غلظت 20 گرم در لیتر باعث افزایش اسید آبسیزیک و کاهش اسید جیبرلیک در جوانه‏های تاک شد. به علاوه تیمار 20 گرم در لیتر موجب افزایش 16/15 درصدی مقدار آب جوانه و کاهش 24/33 درصدی نشت یونی نسبت به تاک‏های شاهد شد. بیشترین مقدار پرولین، پروتئین، کربوهیدرات، قندهای محلول، فنول کل و فعالیت آنزیم‏های آنتی­اکسیدان مربوط به تاک‏های تیمار شده با غلظت 10 و 20 گرم در لیتر کیتوزان بود. همچنین، کمترین مقدار مالون­دی­آلدهید (19/3 میکرومول در گرم وزن‏تر) و پراکسید هیدروژن (34/5 میکرومول در گرم وزن‏تر) در جوانه تاک‏های تیمار شده با غلظت 20 گرم در لیتر مشاهده شد. با افزایش غلظت کیتوزان مقدار رنگیزه‏های فتوسنتزی برگ و پلی­آمین‏ها در جوانه افزایش یافت. همچنین تاک­های تیمار شده با غلظت 10 گرم در لیتر، مقدار پتاسیم، فسفر و کلسیم بیشتری داشتند. به طور کلی محلول­پاشی با غلظت 10 و 20 گرم در لیتر کیتوزان در مرحله نوک­پنبه­ای جوانه با تاثیر بر مقادیر هورمون­ها، پلی­آمین­ها و دیگر شاخص­های فیزیولوژیکی ضمن القاء تحمل به سرما، تا 6 روز باعث تاخیر در زمان شکفتن جوانه‏های انگور یاقوتی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of chitosan spray on cold tolerance physiology and budburst time of 'Yaghooti' grapevine

نویسندگان [English]

  • Hossein Safamanesh
  • Rouhollah Karimi
Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Malayer University, Malayer, Iran
چکیده [English]

The present study aimed to investigate the effect of foliar spray of chitosan (CS; 0, 5, 10 and 20 gr/L) at wooly bud stage (late March) on budburst time and physiological indices related to spring cold tolerance of 'Yaghooti' grapevine during 2021 and 2022. Based on the results, budburst time in vines treated with 10 gr/L CS was delayed up to 6 days compared to the control vines. Also, CS at 20 g/L, increased abscisic acid and decreased gibberellic acid in the bud. Furthermore, the 20 g/L of CS caused a 15.16% increase in the bud water content and a 33.24% decrease in ionic leakage of plant compared to the control. The vines sprayed with CS, especially the concentration of 10 and 20 g/L, had the highest amount of proline, protein, carbohydrates, soluble sugars, total phenol and activity of antioxidant enzymes. In addition, the lowest accumulation of MDA content and H2O2 occurred in the leaves of grape in the treatment of 20 g/L CS. With the increase in CS concentration, the amount of leaf photosynthetic pigments and bud endogenous polyamines in the leaves of grapevine increased. Vines treated with 10 g/L of CS had more potassium, phosphorus and calcium content. In general, spraying with CS at 10 and 20 gr/L in wooly bud stage through affecting bud’s hormones, polyamines and other physiological indices, while inducing cold tolerance, delayed budburst time up to 6 days in 'Yaghooti' grape.

کلیدواژه‌ها [English]

  • Abscisic acid
  • Chilling injury
  • Grape
  • Hormones
  • Soluble sugar

Extended Abstract

Introduction

Late spring cold is one of the problems of growing grapes in temperate and cold climates, which sometimes destroys up to 90% of the vineyard's yield. One of the recent methods to improve tolerance to stress in products is the use of natural molecules such as chitosan (CS), which, by stimulating the responses related to the plant's defense system, neutralizes the harmful effects of biotic and abiotic stresses and improves the yield and quality of products. Chitosan and its derivatives induce resistance of plants against abiotic stresses such as drought, salinity, high temperature and heavy metals. The aim of this research was to investigate the effect of the first season application of CS on budburst time and physiological and biochemical indices related to cold tolerance in 'Yaghooti' ​​grapes under pergola cultivation system.

 

Materials and methods

The present experiment was conducted in 2021 and 2022, on the own-rooted 15-year-old grapevines (V. vinifera 'Yaghooti') from a commercial vineyard with the pergola training system at Malayer in Hamadan province/Iran. The treatments included foliar application of CS at 0, 5, 10 and 20 g/L at two stages in late March and early April. Two weeks after CS spraying, the following indices such as electrolyte leakage, malondialdehyde, hydrogen peroxide, water content, proline, total phenol, total soluble carbohydrate, soluble sugars (glucose, fructose and sucrose), activity of antioxidant enzymes (catalase, ascorbate peroxidase and peroxidase), phytohormones (abscisic acid, gibberellic acid), polyamines (putrescine, spermidine and spermine) of the buds and leaf, photosynthetic pigments and also some leaf nutrients were measured in treated and control vines. Also, budburst time and bloom time were recorded and compared in different treatments.

 Results and Discussion

Based on the results, CS (10 g/L) caused a delay in the time of budburst up to 6 days later and avoided the spring cold injury of the vines. It seems that by increasing the concentration of abscisic acid, CS has made the grape buds to remain dormant and delayed their blooming in the spring season. This has protected the grape buds against the late spring cold. As the concentration of CS increased from 0 to 20 g/L, a decreasing trend was observed in the percentage of bud electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxidase (H2O2). The lowest value of these membrane damage indices was related to the buds of vines sprayed with a concentration of 20 g/L of CS. Chitosan can induce the enzyme antioxidant system and inhibit hydrogen peroxide, therby  enhancing the integrity of the membrane and improving the plant's tolerance to stress. Also, CS at 20 g/L increased abscisic acid and decreased gibberellic acid in the buds of grapevines. Furthermore, 20 g/L of CS caused a 15.16% increase in the bud water content and a 33.24% decrease in EL of the plant compared to the control. The vines sprayed with CS, particularly at concentration of 10 and 20 g/L, exhibited the highest amounts of proline, protein, carbohydrates, soluble sugars, total phenol and activity of antioxidant enzymes. In addition, the lowest accumulation of MDA content and H2O2 occurred in the leaves of grape in the treatment of 20 g/L CS. With the increase in CS concentration, the amount of leaf photosynthetic pigments and bud endogenous polyamines in the leaves of grapevine increased. Vines treated with 10 g/L of CS had more potassium, phosphorus and calcium content.

Conclusion

In the present study, CS spraying, especially at the concentration of 10 and 20 g/l, with an increase in the abscisic acid and a decrease in gibberellic acid contents, caused a delay in the budburst time of grapevine buds for up to 6 days. In addition, the CS foliar application increased the osmotic regulators of proline, protein, carbohydrates and soluble sugars, as well as increasing the activity of oxidizing enzymes and total phenol, leading to a decrease in MDA, H2O2 accumulation, and a decrease in EL percentage in vine buds, increased the cold tolerance in the grape plant through the reduction of oxygen free radicals and damage to the membrane. Therefore, CS foliar spraying, especially at a concentration of 20 g/L, can be used as a solution for cold injuries and increasing tolerance to late spring cold in grape vines. It is suggested to investigate the effect of its combination with SoluPotass on the spring cold tolerance of 'Yaghooti' grapes, considering the polysaccharide nature and emulsifiability of CS.

Aazami, M. A., Asghari-Aruq, M., Hassanpouraghdam, M. B., Ercisli, S., Baron, M., & Sochor, J. (2021). Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants, 10(9), 1877. https://doi.org/10.3390/plants10091877
Ahmad, B., Zaid, A., Sadiq, Y., Bashir, S., Wani, S.H. (2019). Role of Selective Exogenous Elicitors in Plant Responses to Abiotic Stress Tolerance. In M. Hasanuzzaman, K. Hakeem, K. Nahar and H. Alharby (Eds.) Plant Abiotic Stress Tolerance (pp. 273-290). Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_12
Arshad, M. A., Akhtar, G., Rajwana, I. A., Ullah, S., Hussain, M. B., Amin, M., & Ahmed, I. (2022). Foliar application of chitosan improves plant biomass, physiological and biochemical attributes of rose (Gruss-an-Teplitz). Kuwait Journal of Science, 49(2), 1-14. http://dx.doi.org/10.48129/kjs.11655
Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2), 388. http://dx.doi.org/10.3390/plants10020388
Bakhoum, G. S., Sadak, M. S., & Badr, E. A. E. M. (2020). Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre, 44, 1-11. https://doi.org/10.1186/s42269-020-00343-7
Balal, R. M., Shahid, M. A., Javaid, M. M., Iqbal, Z., Liu, G. D., Zotarelli, L., & Khan, N. (2017). Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiologiae Plantarum, 39, 1-15. https://doi.org/10.1007/s11738-016-2335-z
Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Bergmeyer, N. (1970). Methoden der Enzymatischen Analyse, vol 1. AkademieVerlag, Berlin, pp. 636–647. Google Scholar
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10. 1016/0003-2697(76)90527-3
Chatelain, P. G., Pintado, M. E., & Vasconcelos, M. W. (2014). Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Science, 215, 134-140. https://doi.org/10.1016/0003-2697(76)90527-3
Chien, P. J., Sheu, F., & Yang, F. H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1), 225-229. https://doi.org/10.1016/j.jfoodeng. 2005.09.022
Comis, D. B., Tamayo, D. M., & Alonso, J. M. (2001). Determination of monosaccharides in cider by reversed-phase liquid chromatography. Analytica Chimica Acta, 436(1), 173-180. https://doi. org/10.1016/S0003-2670(01)00889-3
Eichhorn, K.W., & Lorenz, D.H. (1977) Phenological development stages of the grapevine. Nachrichtenblatt Dtsch Pflanzenschutzd. 29,119–20. Google Scholar
El-Miniawy, S. M., Ragab, M. E., Youssef, S. M., & Metwally, A. A. (2013). Response of strawberry plants to foliar spraying of chitosan. Research Journal of Agriculture and Biological Sciences, 9(6), 366-372. https://www.cabdirect.org/cabdirect/abstract/20143098846
Ershadi, A., Karimi, R., & Mahdei, K. N. (2016). Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta Physiologiae Plantarum, 38, 1-10. https://doi.org/10.1007/s11738-015-2021-6
Eshghi, S., Karimi, R., Shiri, A., Karami, M., & Moradi, M. (2022). Effects of polysaccharide-based coatings on postharvest storage life of grape: Measuring the changes in nutritional, antioxidant and phenolic compounds. Journal of Food Measurement and Characterization, 16(2), 1159-1170. https://doi.org/10.1007/s11694-021-01275-0
Food and Agriculture Organization (2011) Statistical Yearbook. FAOSTAT, New York.  http://www. fao.org/faostat/en/#data/QC/metadata
Geng, W., Li, Z., Hassan, M. J., & Peng, Y. (2020). Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology, 20, 1-15. https://doi.org/10.1007/s11694-021-01275-0
Hashim, N. F. A., Ahmad, A., & Bordoh, P. K. (2018). Effect of chitosan coating on chilling injury, antioxidant status and postharvest quality of Japanese cucumber during cold storage. Sains Malays, 47(2), 287-294. http://dx.doi.org/10.17576/jsm-2018-4702-10
Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, 291-300. https://doi.org/10.1016/j. plaphy.2021.03.004
Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi. org/10.1016/0003-9861(68)90654-1
Herzog, V., Fahimi, HD. (1973). Determination of the activity of peroxidase. Analytica Chimica Acta, 55, 554–562. DOI: https://10.1016/0003-2697(73)90144-9
Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25, 313-326. https://doi.org/10.1007/s12298-018-0633-1
Hosseini, M. S., Zahedi, S. M., Abadía, J., & Karimi, M. (2018). Effects of postharvest treatments with chitosan and putrescine to maintain quality and extend shelf‐life of two banana cultivars. Food science & nutrition, 6(5), 1328-1337. https://doi.org/10.1002/fsn3.662
Jiao, Z., Li, Y., Li, J., Xu, X., Li, H., Lu, D., & Wang, J. (2012). Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Research, 55, 293-301. https://doi.org/10.1007/s11540-012-9223-8
Kahromi, S., & Khara, J. (2021). Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. Journal of the Science of Food and Agriculture, 101(9), 3898-3907. https://doi.org/10.1002/jsfa.11030
Karla, Y. P. (1998). Handbook of reference methods for plant analysis. CRC Press Inc Boca Raton, FL165170. Google Scholar
Karimi, R. (2019). Spring frost tolerance increase in Sultana grapevine by early season application of calcium sulfate and zinc sulfate. Journal of Plant Nutrition, 42(19), 2666-2681. https://doi. org/10.1080/01904167.2019.1659343
Li, Z., Zhang, Y., Zhang, X., Merewitz, E., Peng, Y., Ma, X., & Yan, Y. (2017). Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. Journal of Proteome Research, 16(8), 3039-3052. https://doi.org/10.1021/acs.jproteome.7b00334
Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: –pigments of photosynthetic biomembrances. In H. Sies, R. Douce, N. Clowick & N. Kaplan (Eds.), Methods in Enzymology Plant Cell Membranes, 148 (pp. 350-381). Academic Press, San Diego (CA). https://doi.org/10.1016/0076-6879(87)48036-1
Liu, J., Gai, L., & Zong, H. (2021). Foliage application of chitosan alleviates the adverse effects of cadmium stress in wheat seedlings (Triticum aestivum L.). Plant Physiology and Biochemistry, 164, 115-121. https://doi.org/10.1016/j.plaphy.2021.04.038
Mohamed, S. (2018). Effect of chitosan, putrescine and irrigation levels on the drought tolerance of sour orange seedlings. Egyptian Journal of Horticulture, 45(2), 257-273 https://doi 10.21608/ejoh.2018. 3063.1050
Molaei, S., Soleimani, A., Rabiei, V., & Razavi, F. (2021). Impact of chitosan in combination with potassium sorbate treatment on chilling injury and quality attributes of pomegranate fruit during cold storage. Journal of Food Biochemistry, 45(4), e13633. https://doi.org/10.1111/jfbc.13633
Muley, A. B., Shingote, P. R., Patil, A. P., Dalvi, S. G., & Suprasanna, P. (2019). Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers, 210, 289-301. https://doi.org/10.1016/j.carbpol. 2019.01.056
Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals. pcp.a076232
Qu, D. Y., Gu, W. R., Zhang, L. G., Li, C. F., Chen, X. C., Li, J., & Wei, S. (2019). Role of chitosan in the regulation of the growth, antioxidant system and photosynthetic characteristics of maize seedlings under cadmium stress. Russian Journal of Plant Physiology, 66, 140-151. https://doi.org/10.1134/ S102144371901014X
Quitadamo, F., De Simone, V., Beleggia, R., & Trono, D. (2021). Chitosan-induced activation of the antioxidant defense system counteracts the adverse effects of salinity in durum wheat. Plants, 10(7), 1365. https://doi.org/10.3390/plants10071365
Salachna, P., & Zawadzińska, A. (2015). Comparison of morphological traits and mineral content in Eucomis autumnalis (Mill.) Chitt. plants obtained from bulbs treated with fungicides and coated with natural polysaccharides. Journal of Ecological Engineering, 16(2), 136-142. https://doi.org/ 10.12911/ 22998993/1868
Shehzad, M. A., Nawaz, F., Ahmad, F., Ahmad, N., & Masood, S. (2020). Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicology and Environmental Safety, 187, 109841. https://doi.org/10.1016/j.ecoenv.2019.109841
Singh, R. K., Martins, V., Soares, B., Castro, I., & Falco, V. (2020). Chitosan application in vineyards induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes. International Journal of Molecular Sciences, 21(1), 306. https://doi.org/10.3390/ijms21010306
Suarez-Fernandez, M., Marhuenda-Egea, F. C., Lopez-Moya, F., Arnao, M. B., Cabrera-Escribano, F., Nueda, M. J., & Lopez-Llorca, L. V. (2020). Chitosan induces plant hormones and defenses in tomato root exudates. Frontiers in Plant Science, 11, 572087. https://doi.org/10.3389/fpls.2020.572087
Velikova, V., & Loreto, F. (2005). On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell & Environment, 28(3), 318-327. https://doi.org/10.1111/j.1365-3040.2004.01314.x
Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117. https://doi.org/10.1021/jf9801973
Vosnjak, M., Sircelj, H., Hudina, M., & Usenik, V. (2021). Response of chloroplast pigments, sugars and phenolics of sweet cherry leaves to chilling. Scientific Reports, 11(1), 7210. https://doi.org/10.1038/ s41598-021-86732-y
Walter, H. J. P., & Geuns, J. M. (1987). High speed HPLC analysis of polyamines in plant tissues. Plant Physiology, 83(2), 232-234. https://doi.org/10.1104/pp.83.2.232
Wang, A., Li, J., Al-Huqail, A. A., Al-Harbi, M. S., Ali, E. F., Wang, J., & Eissa, M. A. (2021). Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants. Nanomaterials, 11(10), 2670. https://doi.org/10.3390/nano11102670
Wang, D., & Gao, Z. (2016). Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Frontiers in Plant Science, 6, 170443. https://doi.org/10.3389/fpls.2015.01248
Wang, H., & Dami, I. E. (2020). Evaluation of budbreak-delaying products to avoid spring frost injury in grapevines. American Journal of Enology and Viticulture, 71(3), 181-190. https://doi.org/10.5344/ ajev.2020.19074
Webster, D. E. & Ebdon, J. S. (2005) Effects of nitrogen and potassium fertilization on perennial raygrass cold tolerance during deacclimation in late winter and early spring. Hort Science, 40, 842-849. https://doi.org/10.21273/HORTSCI.40.3.842
Xu, D., Li, H., Lin, L., Liao, M. A., Deng, Q., Wang, J., & Xia, H. (2020). Effects of carboxymethyl chitosan on the growth and nutrient uptake in Prunus davidiana seedlings. Physiology and Molecular Biology of Plants, 26, 661-668. https://doi.org/10.1007/s12298-020-00791-5
Yemm, E. W., & Willis, A. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508. https://doi.org/10.1042/bj0570508
Zhang, G., Wang, Y., Wu, K., Zhang, Q., Feng, Y., Miao, Y., & Yan, Z. (2021). Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7(10), 342.  https://doi.org /10.3390/horticulturae7100342