اثر کاربرد ریشه ‏ای و محلول‏پاشی برگی سلنیوم بر رشد و عملکرد توت‏فرنگی رقم کویین‏الیزا در کشت هیدروپونیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، گیلان، ایران

چکیده

با توجه به حذف خاک در کشت‌های بدون خاک و عدم تامین برخی عناصر مفید در محلول غذایی، استفاده از عناصر مفید در شرایط کشت بدون خاک می‌تواند در بهبود رشد گیاهان موثر باشد. بنابراین، پژوهش حاضر با هدف بررسی اثر کاربرد ریشه‏ای و محلول‏پاشی سلنیوم بر رشد رویشی، میوه‌دهی و عملکرد توت‏فرنگی رقم کویین‌الیزا در قالب طرح کاملاً تصادفی با هشت تیمار و چهار تکرار انجام شد. در مرحله چهار تا پنج‏برگی، تیمارهای سلنات سدیم به‌صورت محلول‏پاشی در سه غلظت‏ (دو، چهار و شش میلی‏گرم در لیتر) دو هفته یکبار، کاربرد ریشه‏ای در سه غلظت (یک، دو و سه میلی‏گرم در لیتر) یک روز در میان، تیمار ترکیبی محلول‏پاشی دو میلی‏گرم در لیتر همراه با کاربرد ریشه‏ای یک میلی‏گرم در لیتر و تیمار شاهد اعمال گردید. نتایج نشان داد موثرترین تیمارها شامل کاربرد ریشه‌ای سلنات سدیم یک و دو میلی‌گرم در لیتر بودند. بالاترین وزن میوه‌های اولیه (36/15 گرم) در تیمار محلول غذایی سلنات سدیم یک میلی‌گرم در لیتر و بیشترین افزایش در مقدار آنتوسیانین میوه و فعالیت ضداکسایشی در تیمار دو میلی‌گرم در لیتر مشاهده شد. بیشترین میزان جذب آهن و روی در تیمار محلول غذایی یک میلی‌گرم در لیتر سلنات سدیم به ترتیب با میانگین 06/140 و 83/17 میلی‏گرم در کیلوگرم ماده خشک بود. در مجموع، در توت‏فرنگی رقم کویین‌الیزا در شرایط هیدروپونیک، کاربرد ریشه‏ای سلنات سدیم در سطوح مختلف نتایج بهتری را نسبت به تیمارهایی که محلول‏پاشی شدند، نشان داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Root and Foliar Application of Selenium on the Growth and Yield of ‘Queen Eliza’ Strawberry in Hydroponic Culture

نویسندگان [English]

  • Katayan Mohebbi 1
  • Saied Eshghi 1
  • Mohsen Shirdel 1
  • Nilofar Rajaei 2
1 Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
2 Department of Horticultural Science, Faculty of Agriculture, University of Guilan, Guilan, Iran
چکیده [English]

Due to the elimination of soil in soilless cultivation and the lack of some beneficial elements in the nutrient solution, the application of these elements in soilless cultivation can effectively improve plant growth. This research was conducted with the aim of investigating the effect of root and foliar application of selenium on vegetative growth, fruit quality and yield of ‘Queen Elisa’ strawberry, using eight treatments and four replications in a completely randomized design.  The sodium selenate treatments were applied at four to five leaves stage as follows: foliar application at three different concentrations (2, 4, 6 mg.l-1) at two-week- intervals, root application at three different concentrations (1, 2, 3 mg.l-1) , foliar application (mg.l-1) along with root application (mg.l-1), and control treatment . The results showed that the most effective treatments were 1 and 2 mg.l-1 sodium selenate. The highest weight of fruits was obtained from the treatment with root applied-sodium selenite 1 mg.l-1, while treatment with sodium selenite 2 mg.l-1 showed more increase in the amount of anthocyanin and antioxidant activity of fruits. The highest amount of iron (Fe) and zinc (Zn) were found in the root applied-sodium selenite 1 mg.l-1 with 140.06 and 17.83 mg.kg-1 of dry matter, respectively. Consequently, in Queen Elisa strawberry under hydroponic conditon, the root application of sodium selenate at different concentrations had better results than foliar application.

کلیدواژه‌ها [English]

  • Antocyanine
  • Antioxidant
  • Chlorophyll
  • Sodium selenite
  • Nutrition solution

Extended Abstract

Introduction

Selenium is a useful element for plants and essential elements for human health. A reliable strategie to  supply selenium requirement for humans is the bio-enrichment of fruits and vegetables with this element. Considering the soilless cultivation and the lack of some beneficial elements in the nutrient solution, using them can effectively improve plant growth. On the other hand, strawberry is one of the most delicious and popular small fruits that is widely produced throughout the year in soilless culture systems. This research was conducted with the aim of investigating the effect of two methods of selenium application , root and foliar, at different concentration on the growth and yield of Queen Eliza strawberry in hydroponic culture.

 

Materials and Methods

This research was conducted in the greenhouse of the Department of Horticultural Sciences, Faculty of Agriculture, Shiraz University in 2017. A commercial nursery situated in Kurdistan provided Queen Elisa strawberry cultivar. Daughter plants were planted in pots containing a mixture of cocopeat and perlite in a ratio of 1:1. The experiment was conducted for eight treatments and four replications in a completely randomized design. In plants at four to five leaf stages, sodium selenate was applied foliar at three concentrations (2, 4, 6 mg.l-1) at two-week intervals and root-applied at three concentrations (1, 2, 3 mg.l-1) together with the nutrient solution, combination of 2 mg.l-1 foliar and 1 mg.l-1 root application, and control treatment. The average day temperature in the greenhouse was 23±3 oC, the night temperature was 15±3 oC and the average relative humidity was 65%±5. In this research, the characteristics of leaf area, fresh and dry weight of roots and shoots, SPAD index, average weight, length and diameter of primary and secondary fruits, number of achenes, fruit yield, TSS, TA, vitamin C, free radical inhibition percentage (%DPPHs), total phenol, anthocyanin, chlorophyll a, b and total, carotenoids, ion leakage, nutrients such as Fe, Zn, N and Se were evaluated. Data were analyzed using SAS 9.2 software and means were compared using Duncan's multiple range test.

 

Results and Discussion

The results of this study showed that the most effective treatments were treatments 1 and 2 mg.l-1 sodium selenate. The highest chlorophyll was obtained in the 1 mg.l-1 sodium selenate in nutrient solution treatment.  Root application of 1 mg.l-1 sodium selenate resulted in the absorption of iron and zinc, as well as the highest concentration of carotenoid (4.69 mg.g-1 F.W.). Furthermore, the application of sodium selenate at 1 mg.l-1 resulted in the highest fruit weight (15.36 g) and length (37.97 mm). According to the results, the highest levels of anthocyanin and percentage of free radical inhibition were obtained with an average of 12.59 mg cyanidin glucoside/100 ml juice and 96.54 percent reduction of DPPHs, respectively, with 2 mg.l-1 sodium selenate. The highest TSS, TA and TSS/TA were obtained with the application of 2 mg.l-1 sodium selenate. Finally, the highest number of inflorescences, the number of achenes and average diameter of primary and secondary fruits were observed in the treatment with 3 mg.l-1 of sodium selenate. Foliar treatments had the highest selenium uptake in fruit and root. Thus, in this study, the root application had better results at different levels than the foliar application of sodium selenate.

 

Conclusion

Since selenium is an essential element in the human body and cannot be added to the foods directly, the bio-enrichment of products with selenium can be a source of supply of this element. Considering the purpose of the research, t he highest absorption of selenium in the strawberry fruit was observed in the treatment of 4 mg.l- 1sodium selenate foliar spraying , which does not have a negative effect on human health. In general, among the foliar spraying treatments, the 4 mg.l-1 treatment and among the root nutrition solution treatments, the 1 and 2 mg.l-1 treatments had the most positive effect and can be considered as the best treatments investigated in this research.

اوراقی اردبیلی، نرگس.، سعادتمند، سارا.، نیکنام، وحید و خاوری نژاد، رمضانعلی. (1392). اثر بکارگیری سلنیوم بر پارامترهای فیزیولوژیک گیاه سویا (Glycin max L.). فصلنامه گیاه و زیست فناوری ایران، 8(1)، 1-7.
حبیبی، قادر. (1394). تاثیر کاربرد برگی سلنیوم بر رشد، فعالیت و غلظت سلنیوم در دو رقم از گندم بهاره. مجله پژوهش‌های گیاهی (مجله زیست‌شناسی ایران)، 28(1)، 91-102.
حبیبی، قادر.، قربانزاده، پروین و عابدینی، معصومه. (1395). تاثیر سلنیوم بر برخی ویژگی‏های فیزیولوژیک گیاه دارویی بادرنجبویه (Melissa officinalis L.). دوماهنامه علمی پژوهشی گیاهان دارویی و معطر ایران، 32(4)، 698-715.
خادمی آستانه، رزیتا.، طباطبائی، سیدجلال و بلند نظر، صاحبعلی. (1393). تاثیر غلظت‌های مختلف سلنیوم بر عملکرد و ویژگی‌های فیزیولوژِیکی کلم تکمه‌ای. نشریه علوم باغبانی(علوم و صنایع کشاورزی)، 28، 535-548.
سیدلر فاطمی، لیلا، طباطبایی، سیدجلال و فلاحی، اسماعیل. (1388). اثر سیلیسیوم بر رشد و عملکرد گیاه توت فرنگی در شرایط تنش شوری. نشریه علوم باغبانی، 23(1)، 88-95.
شکاری، لیلا.، کامل منش، محمدمجتبی.، مظفریان میمندی، مریم و صادقی، فرشاد. (1394). بررسی اثر سلنیوم بر برخی صفات مورفولوژیکی و فیزیولوژیکی گیاه فلفل تند (Capsicum anuum L.). نشریه علوم باغبانی (علوم و صنایع کشاورزی)، 29(4)، 600-594.  
شیردل، محسن، عشقی، سعید و قرقانی، علی. (1396). مقایسه عملکرد و ویژگی‌های کیفی رقم‌های تجاری توت‌فرنگی در منطقه‌های جنوبی استان فارس به منظور تولید خارج از فصل. مجله علوم و فنون باغبانی ایران، 18(4)، 343-352.
REFERENCES
Abbas, S. M. (2012). Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. Journal of Stress Physiology and Biochemistry, 8(1), 268-286.
Alscher, R. G., Donahue, J. L., & Cramer, C. L. (1997). Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantarum, 100(2), 224-233.‏ https://doi.org/10.1111/j.1399-3054.1997.tb04778.x.
Antunes, L. E. C., Ristow, N. C., Krolow, A. C. R., Carpenedo, S., & Reisser Júnior, C. (2010). Yield and quality of strawberry cultivars. Horticultura Brasileira, 28(2), 222-226. https://doi.org/10.1590/S0102-05362010000200015.
Arora, R., Pitchay, D. S., & Bearce, B. C. (1998). Water‐stress‐induced heat tolerance in geranium leaf tissues: A possible linkage through stress proteins?. Physiologia Plantarum, 103(1), 24-34.
Barrientes, E., Rodrıguez Flores, C., Wrobel, K., & Wrobel, K. (2012). Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. Journal of the Mexican Chemical Society, 56, 03–09.
Belzile, N., Wu, G. J., Chen, Y. W., & Appanna, V. D. (2006). Detoxification of selenite and mercury by reduction and mutual protection in the assimilation of both elements by Pseudomonas fluorescens. Science of the Total Environment, 367(2-3), 704-714. https://doi.org/10.1016/j.scitotenv.2006.03.008.
Bo, L. E. I., Bian, Z. H., Yang, Q. C., Jun, W. A. N. G., Cheng, R. F., Kun, L. I., Liu, W.K., Zhang, Y., Hui, F.A.N.G. & Tong, Y. X. (2018). The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce (Lactuca sativa L.). Journal of Integrative Agriculture, 17(4), 837-846. https://doi.org/10.1016/S2095-3119(17)61759-3.
Bor, J. Y., Chen, H. Y., & Yen, G. C. (2006). Evaluation of antioxidant activity and inhibitory effect on nitric oxide production of some common vegetables. Journal of Agricultural and Food Chemistry, 54(5), 1680-1686. https://doi.org/10.1021/jf0527448.
Bradstreet, R. B. (1954). Kjeldahl method for organic nitrogen. Analytical Chemistry, 26(1), 185-187. https://doi.org/10.1021/ac60085a028.
Broadley, M. R., Alcock, J., Alford, J., Cartwright, P., Foot, I., Fairweather-Tait, S. J., Hart, D. J., Hurst, R., Knott, P., McGrath, S.P., & Meacham, M. C. (2010). Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant and Soil, 332(1-2), 5-18. https://doi.org/10.1007/s11104-009-0234-4.
Ellis, D. R., & Salt, D. E. (2003). Plants, selenium and human health. Current Opinion in Plant Biology, 6(3), 273-279. https://doi.org/10.1016/S1369-5266(03)00030-X.
Fageria, N. K., Baligar, V. C., & Jones, C. A. (2010). Growth and mineral nutrition of field crops. CRC Press: Florida.
FAO. (2017). Food Agriculture Organization statistics on line. http://www.fao.org/organica/oa-faq/oa-faq2/en/.
FAO. (2019). StatisticalYearbook2018:World Food and Agriculture. FAO Food Agric.Organization UN.
Fatemy, L. S., Tabatabaie, S. J., & Fallahi, E. (2009). The effect of silicon on the growth and yield of strawberry grown under saline conditions. Journal of Horticultural Science, 23(1), 88-95. (In Persian).
Finley, J. W., Sigrid-Keck, A., Robbins, R. J., & Hintze, K. J. (2005). Selenium enrichment of broccoli: interactions between selenium and secondary plant compounds. The Journal of Nutrition, 135(5), 1236-1238.
Forbes-Hernandez, T. Y., Gasparrini, M., Afrin, S., Bompadre, S., Mezzetti, B., Quiles, J. L., Giampieri, F., & Battino, M. (2016). The healthy effects of strawberry polyphenols: which strategy behind antioxidant capacity?. Critical Reviews in Food Science and Nutrition, 56(1), S46-S59. https://doi.org/10.1080/10408398.2015.1051919.
Franke, A. A., Custer, L. J., Arakaki, C., & Murphy, S. P. (2004). Vitamin C and flavonoid levels of fruits and vegetables consumed in Hawaii. Journal of Food Composition and Analysis, 17(1), 1-35. https://doi.org/10.1016/S0889-1575(03)00066-8.
Ghasemnezhad, M., Sherafati, M., & Payvast, G. A. (2011). Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annuum) fruits at two different harvest times. Journal of Functional Foods, 3(1), 44-49. https://doi.org/10.1016/j.jff.2011.02.002.
Ghasemnezhad, M., Shiri, M. A., & Sanavi, M. (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Caspian Journal of Environmental Sciences, 8(1), 25-33.
Ghasemnezhad, M., Zareh, S., Rassa, M., & Sajedi, R. H. (2013). Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. Journal of the Science of Food and Agriculture, 93(2), 368-374. https://doi.org/10.1002/jsfa.5770.
Golubkina, N. A., Kosheleva, O. V., Krivenkov, L. V., Dobrutskaya, H. G., Nadezhkin, S., & Caruso, G. (2017). Intersexual differences in plant growth, yield, mineral composition and antioxidants of spinach (Spinacia oleracea L.) as affected by selenium form. Scientia Horticulturae, 225, 350-358. https://doi.org/10.1016/j.scienta.2017.07.001.
Habibi, G. (2015). Effect of foliar application of Se on growth, antioxidant defense and grain concentration of Se in two cultivars of spring wheat plants. Journal of Plant Research (Iranian Journal of Biology), 28(1), 91-102. (In Persian).
Habibi, G., Ghorbanzade, P., & Abedini, M. (2016). Effects of selenium application on physiological parameters of Melissa officinalis L. plants. Iranian Journal of Medicinal and Aromatic Plants, 32(4), 698-715. (In Persian). https://doi.org/10.22092/ijmapr.2016.107141.
Hawes, L.(1996). Strawberries- varieties and culture for commerical production. The Horticultural and food research Instiute of New Zealand Ltd.
Hawrylak-Nowak, B. (2013). Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regulation, 70, 149-157. https://doi.org/10.1007/s10725-013-9788-5.
Hilton, J. W., Hodson, P. V., & Slinger, S. J. (1980). The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). The Journal of Nutrition, 110(12), 2527-2535. https://doi.org/10.1093/jn/110.12.2527.
Hiscox, J. T., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57(12), 1332-1334. https://doi.org/10.1139/b79-163.
Jones, R. O., & Hohl, D. (1990). Structure, bonding, and dynamics in heterocyclic sulfur-selenium molecules, SexSy. Journal of the American Chemical Society, 112(7), 2590-2596. https://doi.org/10.1021/ja00163a018.
Khademi Astaneh, R., Tabatabaie, S. J., & Bolandnazar, S. A. (2015). The effect of different concentrations of se on yield and physiological characteristics of Brussels Sprouts (Brassica oleracea var. Gemmifera). Journal of Horticultural Science, 28(4), 548-535. (In Persian).
Khosravi, S., Valizadehkaji, B., & Abbasifar, A. (2022). Foliar application of selenium affects nitrate accumulation and morpho-physiochemical responses of garden Cress plants. Intrnational Journal of Horticultural Science and Technology, 9(3), 329-338. https://doi.org/10.22059/ijhst.2021.325036.472.
Lako, J., Trenerry, V. C., Wahlqvist, M., Wattanapenpaiboon, N., Sotheeswaran, S., & Premier, R. (2007). Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chemistry, 101(4), 1727-1741. https://doi.org/10.1016/j.foodchem.2006.01.031.
Latocha, P. (2007). The comparison of some biological features of Actinidia arguta cultivars fruit. Horticulture & Landscape Architecture, 28, 105-109.
Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207-220. https://doi.org/10.1016/S0925-5214(00)00133-2.
Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
Lyons, G. H., Lewis, J., Lorimer, M. F., Holloway, R. E., Brace, D. M., Stangoulis, J. C., & Graham, R. D. (2004). High-selenium wheat: agronomic biofortification strategies to improve human nutrition. Food Agriculture Environment, 2(1), 171-178.
Malorgio, F., Diaz, K. E., Ferrante, A., Mensuali‐Sodi, A., & Pezzarossa, B. (2009). Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. Journal of the Science of Food and Agriculture, 89(13), 2243-2251. https://doi.org/10.1002/jsfa.3714.
Marinou, E., Chrysargyris, A., & Tzortzakis, N. (2013). Use of sawdust, coco soil and pumice in hydroponically grown strawberry. Plant, Soil and Environment, 59(10), 452-459. https://doi.org/10.17221/297/2013-PSE.
Marschner, P. (2012). Marschner,s mineral nutrition of higher plants. Academic Press, London.
Marsh, K., Attanayake, S., Walker, S., Gunson, A., Boldingh, H., & MacRae, E. (2004). Acidity and taste in kiwifruit. Postharvest Biology and Technology, 32(2), 159-168. https://doi.org/10.1016/j.postharvbio.2003.11.001.
Mehdi, Y., Hornick, J. L., Istasse, L., & Dufrasne, I. (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18(3), 3292-3311. https://doi.org/10.3390/molecules18033292.
Mendez-Lagunas, L., Rodríguez-Ramírez, J., Cruz-Gracida, M., Sandoval-Torres, S., & Barriada-Bernal, G. (2017). Convective drying kinetics of strawberry (Fragaria ananassa): Effects on antioxidant activity, anthocyanins and total phenolic content. Food Chemistry, 230, 174-181. https://doi.org/10.1016/j.foodchem.2017.03.010.
Mimmo, T., Tiziani, R., Valentinuzzi, F., Lucini, L., Nicoletto, C., Sambo, P., Scampicchio, M., Pii, Y., & Cesco, S. (2017). Selenium biofortification in Fragaria × ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Frontiers in Plant Science, 8, 1887. https://doi.org/10.3389/fpls.2017.01887.
Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498. https://doi.org/10.1016/j.tplants.2004.08.009.
Nawaz, F., Ahmad, R., Ashraf, M. Y., Waraich, E. A., & Khan, S. Z. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety, 113, 191-200. https://doi.org/10.1016/j.ecoenv.2014.12.003.
Ning, N., Yuan, X. Y., Dong, S. Q., Wen, Y. Y., Gao, Z. P., Guo, M. J., & Guo, P. Y. (2016). Increasing selenium and yellow pigment concentrations in foxtail millet (Setaria italica L.) grain with foliar application of selenite. Biological Trace Element Research, 170, 245-252. https://doi.org/10.1016/j.tplants.2004.08.009.
Oraghi Ardebili, N., Saadatmand, S., Niknam, V., & Khavari Nejad, R. (2013). The effects of selenium utilization on metabolism of soybean plants (Glycine max L.). Journal of Plant and Biotechnology, 8(1), 1-7. (In Persian).
Pinto, M. D. S., Kwon, Y. I., Apostolidis, E., Lajolo, F. M., Genovese, M. I., & Shetty, K. (2008). Functionality of bioactive compounds in Brazilian strawberry (Fragaria x ananassa Duch.) cultivars: evaluation of hyperglycemia and hypertension potential using in vitro models. Journal of Agricultural and Food Chemistry, 56(12), 4386-4392.
Roig, M. G., Rivera, Z. S., & Kennedy, J. F. (1995). A model study on rate of degradation of L-ascorbic acid during processing using home-produced juice concentrates. International Journal of Food Sciences and Nutrition, 46(2), 107-115. https://doi.org/10.3109/09637489509012538.
Schiavon, M., Lima, L. W., Jiang, Y., & Hawkesford, M. J. (2017). Effects of selenium on plant metabolism and implications for crops and consumers. In E. A. H. Pilon-Smits, L. H. E. Winkel & Z. Q. Lin (Eds.),  Selenium in plants: molecular, physiological, ecological and evolutionary aspects (pp. 257-275). Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-319-56249-0_15.
Schrauzer, G. N. (2000). Selenomethionine: a review of its nutritional significance, metabolism and toxicity. The Journal of Nutrition, 130(7), 1653-1656.
Seppanen, M., Turakainen, M., & Hartikainen, H. (2003). Selenium effects on oxidative stress in potato. Plant Science, 165(2), 311-319. https://doi.org/10.1016/S0168-9452(03)00085-2.
Shekari, L., Kamelmanesh, M. M., Mozafarian, M., & Sadeghi, F. (2016). Beneficial effects of selenium on some morphological and physiological trait of Hot Pepper (Capsicum annum). Journal of Horticultural Science, 29(4), 594-600. (In Persian). https://doi.org/10.22067/jhorts4.v29i4.32110.
Shirdel, M., Eshghi, S., & Gharaghani, A. (2018). Yield comparison and qualitative characteristics of commercial cultivars of strawberry in southern parts of Fars province in order to off-season production. Iranian Journal of Horticultural Science and Technology, 18 (4), 343-352. (In Persian).
Sippola, J. (1979). Selenium content of soils and timothy (Phleum pratense L.) in Finland. Annales Agriculturae Fenniae, 18, 182-187.
Son, J. E., Kim, H. J., & Ahn, T. I. (2020). Hydroponic systems. In T. Kozai, G. Niu & M. Takagaki (Eds.), Plant factory (pp. 273-283). Academic Press. https://doi.org/10.1016/B978-0-12-816691-8.00020-0.
Tamas, M., Mandoki, Z. S., & Csapó, J. (2010). The role of selenium content of wheat in the human nutrition. A literature review. Acta Univercity Sapientiae Aliment, 3, 5-34.
Terry, N., Zayed, A. M., De Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Biology, 51(1), 401-432. https://doi.org/10.1146/annurev.arplant.51.1.401.
Thavarajah, D., Thavarajah, P., Vial, E., Gebhardt, M., Lacher, C., Kumar, S., & Combs, G. F. (2015). Will selenium increase lentil (Lens culinaris Medik) yield and seed quality?. Frontiers in Plant Science, 6, 356. https://doi.org/10.3389/fpls.2015.00356.
Turakainen, M. (2007). Selenium and its effects on growth, yield and tuber quality in potato (Publication No. 30).  [Doctoral dissertation, University of Helsinki].
White, P. J., & Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182(1), 49-84. https://doi.org/10.1111/j.1469-8137.2008.02738.x.
Yin, H., Qi, Z., Li, M., Ahammed, G. J., Chu, X., & Zhou, J. (2019). Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotoxicology and Environmental Safety, 169, 911-917. https://doi.org/10.1016/j.ecoenv.2018.11.080.
Zhong-hua, B., Bo, L., Rui-feng, C., Yu, W., Tao, L., & Qi-chang, Y. (2020). Selenium distribution and nitrate metabolism in hydroponic lettuce (Lactuca sativa L.): Effects of selenium forms and light spectra. Journal of Integrative Agriculture 19(1), 133–144. https://doi.org/10.1016/S2095-3119(19)62775-9.