اثر بسته‌بندی با اتمسفر تغییر یافته و سینامالدئید بر ویژگی‌های حسی و آلودگی میکروبی بذرپوشینه انار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 استاد، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

3 استاد، دانشکده دامپزشکی، دانشگاه شیراز، شیراز، ایران ‏

چکیده

به­منظور حفظ صفات کیفی، ویژگی­های حسی و کاهش آلودگی میکروبی بذرپوشینه­های انار رقم رباب نی­ریز، اثر ترکیبی بسته‌بندی با دو نوع پوشش پلیمری و غلظت‌های مختلف سینامالدئید، آزمایشی به‌صورت فاکتوریل سه عاملی در قالب طرح کاملاً تصادفی در سه‌ تکرار انجام شد. عامل اول پوشش‌های پلیمری در دو سطح (پلی‌اتیلن + پلی‌استر و بی‌اکسیلاری‌ارینتت‌پلی‌پروپیلن)، عامل دوم غلظت‌های سینامالدئید در چهار سطح (صفر، 100، 150 و 200 میکرولیتر در لیتر) و عامل سوم زمان نمونه‌برداری در شش سطح (روزهای صفر، 5، 10، 15، 20 و 25) بود. بهترین ویژگی‌های حسی بذرپوشینه انار مربوط به روزهای اول انبارمانی بود و با گذشت زمان مطلوبیت عطر و طعم کاهش یافت. تغییرات ویژگی­های حسی و پارامترهای کیفی مرتبط با آن در تیمار بسته‌بندی با پوشش پلیمری پلی‌اتیلن + پلی‌استر حاوی سینامالدئید 200 میکرولیتر در لیتر نسبت به سایر تیمارها کمتر بود. کمترین تعداد کلنی کپک و مخمر، باکتری­های مزوفیل هوازی و باکتری­های سایکروفیل مربوط به پوشش پلی‌اتیلن + پلی‌استر و غلظت 200 میکرولیتر در لیتر سینامالدئید در روز صفر انبارمانی بود که با پوشش پلیمری پلی‌اتیلن + پلی‌استر حاوی غلظت 100 و 150 میکرولیتر در لیتر سینامالدئید و پوشش پلیمری بی‌اکسیلاری‌ارینتت‌پلی‌پروپیلن حاوی غلظت 100، 150 و 200 میکرولیتر در لیتر سینامالدئید در همان روز تفاوت معنی­داری نداشت. تیمار پوشش پلیمری پلی‌اتیلن + پلی‌استر حاوی 200 میکرولیتر در لیتر سینامالدئید باعث افزایش ماندگاری بذرپوشینه انار تا 25 روز شد. پوشش پلیمری پلی‌اتیلن + پلی‌استر حاوی غلظت 200 میکرولیتر در لیتر سینامالدئید باعث حفظ صفات کیفی و ویژگی‌های حسی بذرپوشینه‌ها همراه با حداقل آلودگی میکروبی در مدت انبارمانی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of modified atmosphere packaging and cinnamaldehyde on sensorial ‎characteristics and microbial contamination of pomegranate arils ‎

نویسندگان [English]

  • Azam Ranjbar 1
  • Asghar Ramezanian 2
  • Shahram Shekarforoush 3
1 Ph. D. Candidate, School of Agriculture, Shiraz University, Shiraz, Iran
2 Professor, School of Agriculture, Shiraz University, Shiraz, Iran
3 Professor, School of Veterinary, Shiraz University, Shiraz, Iran‎
چکیده [English]

In order to maintain sensorial characteristics and to reduce the microbial load of pomegranate cv. Rabab-e-Neyriz arils, the combined effects of packaging with two types of polymer films, and different concentrations of cinnamaldehyde a three-factor factorial experiment was conducted in a completely randomized design with three replications. The first factor included polymeric films at two levels (biaxial oriented polypropylene (BOPP) and Polyethylene + Polyester (PE+PES)), the second factor was the concentrations of cinnamaldehyde at four levels (0, 100, 150, and 200 μL L-1) and the third factor was storage times at six levels (0, 5, 10, 15, 20, and 25 day). The best sensorial characteristics was recorded for the first day of storage and the desirability of aroma and tase decreased over time. Changes in sensorial characteristics and related qualitative parameters were more slowly in arils packaged with PE+PS containing 200 μL L-1 cinnamaldehyde. The lowest number of mold and yeast was found in arils packaged with PE+PES film containing 200 μL L-1 cinnamaldehyde on the first day of storage; however, it was not significantly different with PE+PES film containing 100 and 150 μL L-1 cinnamaldehyde and BOPP film containing 100, 150, and 200 μL L-1 cinnamaldehyde at the same time. Packaging with PE+PES film containing 200 μL L-1 cinnamaldehyde extended the shelf life of pomegranate arils up to 25 days. Packaging with PE+PES film containing 200 μL L-1 cinnamaldehyde maintained the quality and sensory properties of arils with minimal microbial contamination during storage.

کلیدواژه‌ها [English]

  • Aerobic mesophilic
  • modified atmosphere
  • mold and yeast
  • psychrophilic
  1. Alique, R., Martínez, M. A., & Alonso, J. (2003). Influence of the modified atmosphere packaging on shelf life and quality of Navalinda sweet cherry. European Food Research and Technology, 217(5), 416-420.
  2. Almenar, E., Hernández-Munoz, P., Lagarón, J. M., Catala, R., & Gavara, R. (2006). Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca). Journal of Agricultural and Food Chemistry, 54(1), 86-91.
  3. Amalaradjou, M. A. R., Baskaran, S. A., Ramanathan, R., Johny, A. K., Charles, A. S., Valipe, S. R., & Venkitanarayanan, K. (2010). Enhancing the thermal destruction of Escherichia coli O157: H7 in ground beef patties by trans-cinnamaldehyde. Food Microbiology, 27(6), 841-844.
  4. (1984). Official Methods of Analysis (14th ed). Association of Official Analytical Chemists, Washington, DC.
  5. Atress, Amal, S. H., El-Mogy, M. M., Aboul-Anean., H. E., & , B. W. (2010) Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science and Ornamental Plants, 2(3), 88-97.
  6. Ayhan, Z., & Eştürk, O. (2009). Overall quality and shelf life of minimally processed and modified atmosphere packaged “ready‐to‐eat” pomegranate arils. Journal of Food Science, 74(5), 399-405.
  7. Banda, K., Caleb, O. J., Jacobs, K., & Opara, U. L. (2015). Effect of active-modified atmosphere packaging on the respiration rate and quality of pomegranate arils (cv. Wonderful). Postharvest Biology and Technology, 109, 97-105.
  8. Berna, A. Z., Geysen, S., Li, B. E., Verlinden, J., Larnmertyn, B. A., & Nicolai, B. M. (2007). Headspace fingerprint mass spectrometry to characterize strawberry aroma at super-atmospheric oxygen conditions. Postharvest Biology and Technology, 46, 230-236.
  9. Bounatirou, S., Smiti, S., Miguel, M. G., Faleiro, L., Rejeb, M. N., Neffati, M., Costa, M.M., Figueiredo, A.C., Barroso, J.G., & Pedro, L. G. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus et Link. Food Chemistry, 105(1), 146-155.
  10. Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253.
  11. Caleb, O. J., Mahajan, P. V., Al-Said, F. A., & Opara, U. L. (2013a). Transpiration rate and quality of pomegranate arils as affected by storage conditions. CyTA-Journal of Food, 11(3), 199-207.
  12. Caleb, O. J., Mahajan, P. V., Manley, M., & Opara, U. L. (2013b). Evaluation of parameters affecting modified atmosphere packaging engineering design for pomegranate arils. International Journal of Food Science and Technology, 48(11), 2315-2323.
  13. Devlieghere, F., Gil, M.I., & Debevere, J. (2002). Modified atmosphere packaging (MAP). In: The Nutrition Handbook for Food Processors, C. J. K Henry and C. Chapman (Ed.). Woodhead Publishing, UK, pp. 342-372.
  14. Díaz-Mula, H. M., Martínez-Romero, D., Castillo, S., Serrano, M., & Valero, D. (2011). Modified atmosphere packaging of yellow and purple plum cultivars. 1. Effect on organoleptic quality. Postharvest Biology and Technology, 61(2-3), 103-109.
  15. Ding, C. K., Chachin, K., Hamauzu, Y., Ueda, Y., & Imahori, Y. (1998). Effects of storage temperatures on physiology and quality of loquat fruit. Postharvest Biology and Technology, 14(3), 309-315.
  16. Embuscado, M. E., & Huber, K. C. (2009). Edible films and coatings for food applications (pp. 222). Springer.
  17. ISO 21527-2. (2008). Microbiology of food and animal feeding stuffs-horizontal method for the enumeration of yeasts and moulds—Part 2: colony count technique in products with water activity less than or equal to 0.95. International Standards Organization, Switzerland.
  18. Hernandez-Munoz, P., Almenar, E., Del Valle, V., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria× ananassa) quality during refrigerated storage. Food Chemistry, 110(2), 428-435.
  19. Holley, R. A., & Patel, D. (2005). Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiology, 22(4), 273-292.
  20. Institute of Standards and Industrial Research of Iran. (1989). Microbiology of food, animal feed- evaluation of the methods for enumerating coliform bacteria - Colony counting method 3 nd Revision, ISIRI No. 9263. (In Farsi).
  21. Kader, A. A., & Ben-Yehoshua, S. (2000). Effects of super atmospheric oxygen levels on postharvest physiology and quality of fresh fruits and vegetables. Postharvest Biology and Technology, 20(1), 1-13.
  22. Kader, A.A., & Watkins, C.B. (2000). Modified atmosphere packaging—toward 2000 and beyond. HortTechnology, 10(3), 483-486.
  23. Lamikanra, O., Chen, J. C., Banks, D., & Hunter, P. A. (2000). Biochemical and microbial changes during the storage of minimally processed cantaloupe. Journal of Agricultural and Food Chemistry, 48(12), 5955-5961.
  24. Li, X., Li, W., Jiang, Y., Ding, Y., Yun, J., Tang, Y., & Zhang, P. (2011). Effect of nano‐ZnO‐coated active packaging on quality of fresh‐cut Fuji apple. International Journal of Food Science and Technology, 46 (9), 1947-1955.
  25. Lin, Q., Xie, Y., Guan, W., Duan, Y., Wang, Z., & Sun, C. (2019). Combined transcriptomic and proteomic analysis of cold stress induced sugar accumulation and heat shock proteins expression during postharvest potato tuber storage. Food Chemistry, 297, 124991.
  26. Linde, J. H., Combrinck, S., Regnier, T. J. C., & Virijevic, S. (2010). Chemical composition and antifungal activity of the essential oils of Lippia rehmannii from South Africa. South African Journal of Botany, 76(1), 37-42.
  27. Loir, Y. L. Baron, F., & Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetic Molecular Research, 2, 63-76.
  28. Lopez-Gálvez, F., Ragaert, P., Haque, M. A., Eriksson, M., van Labeke, M. C., & Devlieghere, F. (2015). High oxygen atmospheres can induce russet spotting development in minimally processed iceberg lettuce. Postharvest Biology and Technology, 100, 168-175.
  29. Montero-Prado, P., Rodriguez-Lafuente, A., & Nerin, C. (2011). Active label-based packaging to extend the shelf-life of “Calanda” peach fruit: Changes in fruit quality and enzymatic activity. Postharvest Biology and Technology, 60(3), 211-219.
  30. Martínez-Romero, D., Guillén, F., Valverde, J. M., Bailén, G., Zapata, P., Serrano, M., Castillo, S., & Valero, D. (2007). Influence of carvacrol on survival of Botrytis cinerea inoculated in table grapes. International Journal of Food Microbiology, 115(2), 144-148.
  31. Melgarejo-Flores, B. G., Ortega-Ramírez, L. A., Silva-Espinoza, B. A., González-Aguilar, G. A., Miranda, M. R. A., & Ayala-Zavala, J. F. (2013). Antifungal protection and antioxidant enhancement of table grapes treated with emulsions, vapors, and coatings of cinnamon leaf oil. Postharvest Biology and Technology, 86, 321-328.
  32. NP-4405, (2002). Food microbiology-general rules for microorganism counts. Colonies count at 30◦C. Instituto Português da Qualidade, Lisboa, Portugal. (In Portuguese).
  33. Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Color measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36-60.
  34. Radi, M., Firouzi, E., Akhavan, H., & Amiri, S. (2017). Effect of gelatin-based edible coatings incorporated with Aloe vera and black and green tea extracts on the shelf life of fresh-cut oranges. Journal of Food Quality, 146-152.
  35. Remon, S., Venturini, M. E., Lopez-Buesa, P., & Oria, R. (2003). Burlat cherry quality after long range transport: optimisation of packaging conditions. Innovative Food Science and Emerging Technologies, 4(4), 425-434.
  36. Sanchez-González, L., Pastor, C., Vargas, M., Chiralt, A., González-Martinez, C., & Chafer, M. (2011). Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biology and Technology, 60(1), 57-63.
  37. Sanla‐Ead, N., Jangchud, A., Chonhenchob, V., & Suppakul, P. (2012). Antimicrobial activity of cinnamaldehyde and eugenol and their activity after incorporation into cellulose‐based packaging films. Packaging Technology and Science, 25(1), 7-17.
  38. Sernaitė, L., Rasiukeviciute, N., & Valiuskaitė, A. (2020). Application of plant extracts to control postharvest gray mold and susceptibility of apple fruits to B. cinerea from different plant hosts. Foods, 9(10), 1430.
  39. Serrano, M., Martínez-Romero, D., Guillén, F., Valverde, J. M., Zapata, P. J., Castillo, S., & Valero, D. (2008). The addition of essential oils to MAP as a tool to maintain the overall quality of fruits. Trends in Food Science and Technology, 19(9), 464-471.
  40. Serrano, M., Martinez-Romero, D., Castillo, S., Guillén, F., & Valero, D. (2005). The use of natural antifungal compounds improves the beneficial effect of MAP in sweet cherry storage. Innovative Food Science and Emerging Technologies, 6(1), 115-123.
  41. Sivakumar, D., Wijeratnam, R. W., Abeyesekere, , & Wijesundera, R. L. C. (2002) Combined effect of generally regarded as safe (GRAS) compounds and Trichoderma harzianum on the control of postharvest diseases of rambutan. Phytoparasitica, 30(1), 43-51.
  42. Thompson, A. K., Prange, R. K., Bancroft, R., & Puttongsiri, T. (2018). Controlled atmosphere storage of fruit and vegetables. CABI.
  43. Tinebra, I., Sortino, G., Inglese, P., Fretto, S., & Farina, V. (2021). Effect of different modified atmosphere packaging on the quality of mulberry Fruit (Morus alba cv Kokuso 21). International Journal of Food Science, 2021, 1-12.
  44. Valero, D., Valverde, J. M., Martínez-Romero, D., Guillen, F., Castillo, S., & Serrano, M. (2006). The combination of modified atmosphere packaging with eugenol or thymol to maintain quality, safety and functional properties of table grapes. Postharvest Biology and Technology, 41(3), 317-327.
  45. Valverde, J. M., Guillén, F., Martínez-Romero, D., Castillo, S., Serrano, M., & Valero, D. (2005). Improvement of table grapes quality and safety by the combination of modified atmosphere packaging (MAP) and eugenol, menthol, or thymol. Journal of Agricultural and Food Chemistry, 53(19), 7458-7464.
  46. Van de Velde, F., Esposito, D., Overall, J., Méndez‐Galarraga, M. P., Grace, M., Élida Pirovani, M., & Lila, M. A. (2019). Changes in the bioactive properties of strawberries caused by the storage in oxygen‐and carbon dioxide‐enriched atmospheres. Food Science and Nutrition, 7(8), 2527-2536.
  47. Waghmare, R. B., & Annapure, U. S. (2013). Combined effect of chemical treatment and/or modified atmosphere packaging (MAP) on quality of fresh-cut papaya. Postharvest Biology and Technology, 85, 147-153.
  48. Watts, B. M., Ylimaki, G. L., Jeffery, L. E., & Elias, L. G. (1989). Basic sensory methods for food evaluation. The Development Research Center, Ottawa, Canada, 47-58.
  49. Zheng, L., Bae, Y. M., Jung, K. S., Heu, S., & Lee, S. Y. (2013). Antimicrobial activity of natural antimicrobial substances against spoilage bacteria isolated from fresh produce. Food Control, 32(2), 665-672.