تاثیر طیف‌های نوری مختلف بر ویژگی‌های رشدی و عملکرد فتوسنتزی چهار رقم حسن یوسف ‏‏(‏Solenostemon scutellarioides L.‎‏)‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان، اردکان، ایران

2 دانشیار، دانشکده کشاورزی و منابع طبیعی دانشگاه اردکان، اردکان، ایران

چکیده

به­منظور بررسی تاثیر طیف­های مختلف نوری بر رشد و ویژگی­های فتوسنتزی چهار رقم گیاه حسن­یوسف ("رِد"، "بلک دراگون"، "ولوت رد" و "ایمپرود") آزمایشی درون شش اتاقک رشد مجهز به نور معمولی گلخانه (شاهد)، 100درصد نور آبی، 15درصد نور آبی+85 درصد نور قرمز، 30 درصد نور آبی+70 درصد نور قرمز، 15 درصد نور آبی+65 درصد نور قرمز+20 درصد نور سفید و 30 درصد نور آبی+50 درصد نور قرمز+20 درصد نور سفید، به­صورت فاکتوریل در قالب طرح کاملاً تصادفی انجام شد. پس از پنج هفته قرارگیری گیاهان تحت نورهای مختلف، پارامترهای بیوفیزیک فتوسنتزی و خصوصیات رشدی گیاهان بررسی شد. بیشترین میزان شاخص حداکثر کارایی کوانتومی فتوسیستم II و حداکثر فلورسانس متغیر نسبی (FM/F0) در تیمارهای ترکیبی 30 درصد آبی+70 درصد قرمز (رقم "رد")، شاهد (رقم­های "بلک دراگون" و "ولوت رد") و تیمار ترکیبی 30 درصد آبی+50 درصد قرمز+20 درصد سفید (رقم "ایمپرود") به­دست آمد. میزان جذب نور به­ازای هر مرکز واکنش (ABS/RC) در رقم "ایمپرود" با 100 درصد نور آبی، ترکیبی از 15 درصد آبی+65 درصد قرمز+20 درصد سفید و شاهد بیشتر از سایر تیمارها بود. از آنجا که PIABS می­تواند به عنوان شاخص زندگی PSII استفاده شود، نتایج حاصل از پژوهش حاضر حاکی از آن است که تیمارهای شاهد ("ولوت رد")، 30 درصد آبی+70 درصد قرمز ("رد")، 30 درصد آبی+50 درصد قرمز+20 درصد سفید (ارقام "بلک دراگون" و "ایمپرود")، تیمارهای مناسبی برای پشتیبانی از عملکرد طبیعی فتوسنتز بودند. 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of different light spectra on growth characteristics and photosynthesis yield of four ‎cultivars of coleus (Solenostemon scutellarioides L.)‎

نویسندگان [English]

  • Davood Kazemi 1
  • Maryam Dehestani Ardakani 2
1 M.Sc. Student, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, ‎Iran
2 Assosiate Professor, Faculty of Agriculture & Natural Resources, Ardakan University, P.O. Box 184, Ardakan, Iran
چکیده [English]

In order to investigate the effect of different light spectra on growth and photosynthetic properties of four cultivars (‘Red’, ‘Black Dragon’, ‘Velvet Red’ and ‘Improd’) of coleus, in six growth chambers equipped with normal greenhouse light (control), 100 % blue light, 15 % blue light+85 %red light, 30 % blue light+ 70 % red light, 15 % Blue light+65 % red light+20 % white light and 30 % blue light+50 % red light+20 % white light, a factorial experiment as a completely randomized design was done. After five weeks of exposure of plants to different lights, photosynthetic biophysical parameters and plant growth characteristics were investigated. The maximum quantum yield of PSII (FV/FM) and relative maximal variable fluorescence (Fm/F0), significantly increased in combined treatments of 30 % blue+70 % red (‘Red’), control (cultivars ‘Black Dragon’and ‘Velvet Red’) and a combination of 30 % blue+50 % red+20 % white (‘Improd’ cultivar) was obtained. The specific energy fluxes per reaction center for energy absorption (ABS/RC) significantly increased in ‘Improd’ cultivar with 100 %blue light, a combination of 15% blue+65% red+20 % white and control treatments. Since PIABS can be used as an indicator of PSII life, the results of the present study indicate that the control treatments (‘Velvet Red’), 30% blue+70 % red (‘Red’), 30 % blue+50 % red+20 % white (‘Black Dragon’ and ‘Improd’) were suitable treatments to support the natural function of photosynthesis.

کلیدواژه‌ها [English]

  • Leaf chlorophyll fluorescence
  • light quality
  • light spectra
  • morphology‎
  1. Ahmad, M., & Cashmore, A.R. (1997). The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A of ohytochrome B in Arabidopsis thaliana. The Plant Journal, 11, 421-427.
  2. Ahmad, M., Grancher, N., Heil, M., Black, R. C., Giovani, B., Galland, P., & Lardemer, D. (2002). Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in arabidopsis. Plant Physiology, 129, 774-785.
  3. Aliniaeifard, S., Seif, M., Arab, M., Zare Mehrjerdi, M., Li, T., & Lastochkina, O. (2018). Growth and photosynthetic performance of Calendula officinalis under monochromatic red light. International Journal of Horticultural Science, 5, 123-132.
  4. Allen, J., Gantt, E., Golbeck, J., Osmond, B., Abasova, L., Boulay, C., Vass, I., & Kirilovsky, D. (2008) Non-photochemical-quenching mechanisms in the Cyanobacterium Thermosynechococcus elongatus, In: Allen, J.F., Gantt, E., Golbeck, J.H., Osmond, B. (eds) Photosynthesis. Energy from the Sun. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6709-9_216
  5. (2017). Gulf Coast Research and Education Center Plant City Teaching Garden. University of Florida. IFAS Extension. Available at http://gcrec. ifas. ufl. edu/ GCREC-Garden/ docs/ pdf/Coleus.pdf (visited 10 July 2018).
  6. Apel, K., & Kloppstech, K. (1980) The effect of light on the biosynthesis of the light-harvesting chlorophyll a/b protein. Planta, 150, 426-430.
  7. Appenroth, K.J., Keresztes, A., Sarvari, E., Jaglarz, A., & Fischer, W. (2003). Multiple effects of chromate on Spirodela polyrhiza: electron microscopy and biochemical investigations. Plant Biology, 5 (3), 315-323.
  8. Aalifar, M., Aliniaeifard, S., Arab, M., Mehrjerdi, M. Z., & Serek, M. (2020). Blue light postpones senescence of carnation flowers through regulation of ethylene and abscisic acid pathway-related genes. Plant Physiology and Biochemistry, 151, 103-112.
  9. Arslan, Ö., Nalçaiyi, A. B., Erdal, Ş. Ç., Pekcan, V., Kaya, Y., Çicek, N., & Ekmekci, Y. (2020). Analysis of drought response of sunflower inbred lines by chlorophyll a fluorescence induction kinetics. Photosynthetica, 58, 163-172.
  10. Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O., & Li, T. (2018). Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants, 10(5), Ply052. https://doi.org/10.1093/aobpla/ply052
  11. Biswal, A.K., Pattanayak, G.K., Pandey, S.S., Leelavathi, S., Reddy, V.S., & Tripathy, B.C. (2012). Light intensitydependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiology, 159, 433-449.
  12. Boureima, S., Oukarroum, A., Diouf, M., Cisse, N., & Van Damme, P. (2012). Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environmental and Experimental Botany, 81, 37-43.
  13. Britz, S.J., & Sager, J.C. (1990). Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources. Plant Physiology, 94, 448-454.
  14. Çiçek, N., Pekcan, V., Arslan, Ö., Erdal, Ş.Ç., Nalçaiyi, A.S.B., Çil, A.N., Şahin, V., Kaya, Y., & Ekmekçi, Y. (2019). Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Brazilian Journal of Botany, 42, 249-260.
  15. Dehkhodaei, P., Reezi, S., & Ghasemei Ghehsareh, M. (2019). The effect of the light-emitting diode spectrum compared to the greenhouse natural light on the quality of Solenostemon escutellariodes 'Wizard Scarlet' and Petunia × hybrida 'Scarlet Eye' Transplant. Journal of Horticultural Science, 33(3), 537-548.
  16. Desimone, S., Oka, Y., & Inoue, Y. (2000). Effect of light on root hair formation in Arabidopsis thaliana phytochrome-deficient mutants. Journal of Plant Research, 113, 63-69.
  17. Falahi, Z., Aliniaeifard, S., Arab, M., & Dianati deylami, S. (2021). Effects of light spectra on quality, morphology and photosynthesis characteristics of anthurium (Anthurium andraeanum) cut flower under cold storage condition. Journal of Horticultural Science, 35(1), 13-24. doi: 10.22067/jhs.2021.60521.0
  18. Fan, X., Zang, J., Xu, Z., Guo, S., Jiao, X., Liu, X., & Gao, Y. (2013). Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris). Acta Physiologiae Plantarum, 35, 2721-2726.
  19. Feyziyev, Y.M. (2020). Chlorophyll fluorescence and “maximum quantum efficiency” of photosystem II in plant sciences. Life Science and Biomedicine, 74, 18-28.
  20. Folta, K. M., & Spalding, E. P. (2001). Opposing roles of phytochrome A and phytochrome B in early cryptochrome-mediated growth inhibition. The Plant Journal, 28, 333-340.
  21. Franklin, K. A., & Whitelam, G. C. (2005). Phytochromes and shade-avoidance responses in plants. Annals of Botany, 96, 169-175.
  22. Fukuda, N., Ajima, C., Yukawa, T., & Olsen, J. (2016). Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environmental and Experimental Botany, 121, 102-111.
  23. Goltsev V.N., Kalaji H.M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., & Allakhverdiev, S.I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63 (6), 869-893.
  24. Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107-3117.
  25. Jeong, S.W., Hogewoning, S.H., & Ieperen, W.V. (2014). Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Scientia Horticulturae, 165, 69-74.
  26. Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Łukasik, I., Goltsev, V., & Ladle, R.J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38, 102.
  27. Khazaei, M., Rafiei, F., Sabzalian, M., Houshmand, S. (2021). Effect of light emitting diodes irradiation on morpho-physiological traits ‎of three ‎Mentha Spp.‎. Iranian Journal of Horticultural Science, 52(2), 461-471. doi: 10.22059/ijhs.2020.298413.1771. (In Farsi).
  28. Manaa, A., Goussi, R., Derbali, W., Cantamessa, S., Essemine, J., & Barbato, R. (2021). Photosynthetic performance of quinoa (Chenopodium quinoa) after exposure to a gradual drought stress followed by a recovery period. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1862(5), 148383.
  29. Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K., & Kurata, K. (2008) Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiology, 49, 664-670.
  30. Meng, L.L., Song, J.F., Wen, J., Zhang, J., & Wei, J.H.J.P. (2016). Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica, 54, 414-421
  31. Molas, M. L., Kiss, J.Z., & Correll, M.J. (2006). Gene profiling of the red-light signaling pathways in roots. Journal of Experimental Botany, 57(12), 3217-3229.
  32. Mott K.A. (2009). Opinion: Stomatal responses to light and CO2 depend on the mesophyll. Plant Cell & Environment, 32, 1479-1486.
  33. Nhut, D.T., Takamura, T., Watanabe, H., Okamoto, K., & Tanaka, M. (2003). Responses of strawberry plantlets cultured in vitro under super bright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue and Organ Culture, 73, 43-52.
  34. Oukarroum, A., El Madidi, S., Schansker, G., & Strasser, R.J. (2007). Probing the responses of barley cultivars (Hordeum vulgare ) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 60, 438-446
  35. Öz, M.T., Turan, Ö., Kayihan, C. Eyidoğan, F., Ekmekçi, Y., Yücel, M., & Öktem, H.A. (2014). Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test. Photosynthetica, 52, 555-563, 2014.
  36. Randall, W.C., & Lopez, R G. (2014). Comparison of supplemental lighting from high-pressure sodium lamps and light-emitting diodes during bedding plant seedling production. HortScience, 49(5), 589-595.
  37. Rapacz, M., Sasal, M., Kalaji, H.M., & Kościelniak, J. (2015). Is the OJIP test a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under variable winter environments? PloS one, 10, e0134820.
  38. Rashidi, A., Tehranifar, A., & Nemati, H. (2017). The effect of blue and red spectrum combinations and light intensity on vegetative growth of petunia seedling. Iranian Journal of Horticultural Science, 48(2), 443-446. (In Farsi).
  39. Ripoll, J., Bertin, N., Bidel, L.P.R., & Urban, L. (2016). A user's view of the parameters derived from the induction curves of maximal chlorophyll a fluorescence: Perspectives for analyzing stress. Frontiers in Plant Science, 7, 1679.
  40. Savvides, A., Fanourakis, D., & van Ieperen, W. (2012) Co-ordination of hydraulic and stomatal conductance's across light qualities in cucumber leaves. Journal of Experimental Botany, 63, 1135-1143.
  41. Seif, M., Aliniaeifard, S., Arab, M., Mehrjerdi, M. Z., Shomali, A., Fanourakis, D., Tao, L., & Woltering, E. (2021). Monochromatic red light during plant growth decreases the size and improves the functionality of stomata in chrysanthemum. Functional Plant Biology, 48(5), 515-528.
  42. Solomon, N. (1999). The Noni Phenomenon. (No. 615.321 S688n). Utah, USA: Direct Source Publishing, 43-47
  43. Stirbet, A., Lazár, D., & Kromdijk, J. (2018). Govindjee: Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? – Photosynthetica, 56, 86-104.
  44. Strasser, R.J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanisms, Regulation and Adaptation, 25, 445-483.
  45. Surducan, V., Lung, I., & Surducan, E. (2009). The effect of coloured light on Ipomoea purpurea National Institute for Research and Development of Isotopic and Molecular Technologies, In Journal of Physics: Conference Series, IOP Publishing, August 2009. 182, 65-103.
  46. Wang, M., & Kaufman, R.J. (2016). Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529, 326.
  47. Yusuf, M.A., Kumar, D., Rajwanshi, R., Strasser, R.J., Tsimilli-Michael, M., & Sarin, N.B. (2010). Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurement. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1797(8), 1428-1438.