ماندگاری و واکنش فیزیولوژیکی گل شاخه‌بریده لیلیوم اورینتال به عنصر شبه‌ضروری سیلیسیم در کشت بدون خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، دانشکده کشاورزی، واحد مهاباد، دانشگاه آزاد اسلامی، مهاباد، ایران

2 دانشیار، دانشکده کشاورزی، واحد مهاباد، دانشگاه آزاد اسلامی، مهاباد، ایران

چکیده

این آزمایش با توجه به حذف خاک در کشت­های بدون خاک و در نتیجه حذف منبع اصلی تأمین عنصر شبه­ضروری سیلیسیم و همچنین عدم مطالعه تأثیر احتمالی این عنصر در پرورش لیلیوم شاخه­بریده، طراحی و اجرا گردید. در همین راستا و پس از انتقال پیازهای لیلیوم (Lilium oriental 'Casa Blanca') به بستر فیبر نارگیل (الیاف فرآوری­شده نارگیل)، گیاهان استقرار یافته با محلول غذایی حاوی غلظت­های مختلف اسید­سیلیسیک (صفر، 50، 100 و 150 میلی­گرم در لیتر سیلیسیم) محلول­دهی و ویژگی‌های فیزیولوژیکی و کیفیت پس از برداشت گل­های تولیدی در قالب طرح کاملاً تصادفی با 3 تکرار مورد بررسی قرار گرفت. نتایج آزمایش بیانگر افزایش معنی­دار آب جذب­شده توسط ساقه گل­دهنده، ماندگاری گل، کلروفیل کل، قند محلول، محتوای نسبی آب و کاهش معنی­دار نشت یونی برگ بود. بر همین اساس، بیشترین آب جذب­شده توسط ساقه گل­دهنده (6/0 میلی‌لیتر بر گرم وزن‌تر در روز)، عمر گلجایی (11/11 روز) و کلروفیل کل (97/0 میلی­گرم بر گرم وزن‌تر) در غلظت 150 میلی­گرم در لیتر سیلیسیم مشاهده گردید. همچنین جذب عناصر معدنی پتاسیم، کلسیم و سیلیسیم به­طور معنی­داری تحت تأثیر سیلیسیم قرار گرفتند. بیشترین غلظت کلسیم درغلظت 150 میلی­گرم در لیتر سیلیسیم مشاهده شد. براساس نتایج آزمایش، افزودن سیلیسیم به محلول غذایی منجر به بهبود روابط آبی گیاه، شاخص­های کیفی پس از برداشت، جذب عناصر معدنی و در نتیجه افزایش ماندگاری گل شاخه­بریده لیلیوم رقم کاسابلانکا گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Vase life and physiological reaction of oriental lilium 'Casa Blanca' to silicon as a quasi-essential element under soilless cultivation system

نویسندگان [English]

  • Osman Mamrashpour 1
  • Mohammad Javad Nazarideljou 2
1 Former M. Sc. Student, Faculty of Agriculture, Mahabad Branch, Islamic Azad University, Mahabad, Iran
2 Associate Professor, Faculty of Agriculture, Mahabad Branch, Islamic Azad University, Mahabad, Iran
چکیده [English]

This experiment was conducted because of soil elimination as an important source of silicon (Si) (as a quasi-essential element) in soilless cultivation systems and also low information about Si effects on lilium cut flower. Accordingly, after transferring the Lilium longiflorum 'Casa Blanca' bulbs to pots containing coco-fiber media, plants were fed with a nutrient solution containing different silicic acid concentrations (0, 50, 100 and 150 mg/L Si). Physiological characteristics and postharvest quality of harvested flowers were evaluated based on a completely randomized design with 3 replications. Based on the results, compared with control, Si application significantly increased water uptake, flower longevity, total chlorophyll, solution uptake, relative water content and mineral uptake (K, Ca and Si) and reduced the ion leakage. Accordingly, the maximum water uptake (0.6 ml/g FW/day), vase life (11.11 days), total chlorophyll content (0.97 mg/g FW), leaf calcium (2.9 %) and silicon content (3.1 %) were observed in 150 ppm Si concentration. Based on results of the present study, addition of silicon to the lilium nutrient solution led to the improvement of plant water relations, postharvest quality indices, mineral absorption and, consequently, increasing the flower longevity of lilium 'Casa Blanca’cultivar.

کلیدواژه‌ها [English]

  • Cultivation method
  • cut flower
  • mineral element
  • Nutrient Solution
  • vase life
  1. Ahmed, M., Hassana, F. & Asif, M. (2014). Amelioration of drought in sorghum (Sorghum bicolor L.) by silicon. Communications in Soil Science and Plant Analysis, 45, 470-486.
  2. Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W. & Kaufman, P. B. (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science, 1, 96-103.
  3. Al-Aghabary, K., Zhu, Z. & Shi, Q. (2005).Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27, 2101-2115.
  4. Behtash, F., Tabatabaie, S. J., Malakoti, M. J., Sarvaradin, M. H. & Avestan, SH. (2010). Effect of cadmium and silicon on growth and some physiological aspects of red beet. Sustainable Agriculture and Production Science, 20(1), 53-67. (in Farsi)
  5. Burchi, G. B., Nesi, B. & Grassotti, A. (2005). Longevity and ethylene production during development stages of two cultivars of lilium flowers ageing on plant or in vase. Acta Horticulture, 682, 813-821.
  6. Cachorro, P., Ortiz, A. & Cerdá, A. (1994). Implications of calcium nutrition on the response of Phaseolus vulgaris L. to salinity. Plant Soil, 159, 205-212.
  7. Chapman, H. D. & Pratt, P. F. (1962). Methods of analysis for soils, plants and waters. Soil Science, 93(1), 68.
  8. De Hertogh, A., Schepeen, J. M., Kamenetsky, R., Le Nard, M. & Okubo, H. (2012). The Globalization of Flower Bulb Industry. Ornamental Geophytes: From Basic Science to Sustainable Production, 1.
  9. Debicz, R. & Wróblewska, K. (2011). The effect of silicon foliar application on the development of Seasonal ornamental plants. Acta Agrobotanica, 64, 107-114.
  10. Dehghanpodeh, S. (2012). Effect Potassium silicate and nanosilicon on the growth of strawberry under drought stress. M.Sc. Thesis. Isfahan university of technology, Iran. (in Farsi)
  11. Chang, Y. C., Albano, J. P. & Miller, W. B. (2008). Oriental hybrid lily cultivars vary in susceptibility to upper leaf necrosis. Acta Horticulture, 766, 433-440.
  12. Elliott, C. L. & Snyder, G.H. (1991). Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. Journal of Agriculture and  Food Chemestry, 39, 1118-1119.
  13. Epstein, E. (1994). The anomaly of silicon in plant biology. National Academy of Sciences, 91, 11-17.
  14. Flora Holland. (2016). Anuual report.  from www.royalfloraholland.com.
  15. Galston, A. W., Davies, P. J. & Satter, R. L. (1980). The life of the green plant. Englewood Cliffs, New Jersey: Prentice-Hall Inc; 69.
  16. Fatemi, L., Tabatabai, S. & Fallahi, J. (2009). Effect of silicon on photosynthesis intensity and nutrient concentration of strawberry plants under saline conditions. Journal of Sustainable Agriculture, 19(1), 107-118.
  17. Gao, X., Zou, C., Wang, L. & Zhang, F. (2006). Silicon Decreases Transpiration Rate and Conductance from Stomata of Maize Plants. Journal of Plant Nutrition, 29(9), 1637-1647.
  18. Gong, H., Zhu, X., Chen, K., Wang, S. & Zhang, C. (2005). Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 169, 313-321.
  19. Grassotti, A. & Gimelli, F. (2011). Bulb and cut flower production in the genus Lilium: current status and the future. Acta Horticulturae, 900, 21-35.
  20. Guosheng, L., Dejuan, T., Fadi, C., Ya, S., Weimin F., Zhiyong, G., Zhaolei, L. & Sumei, C. (2011). The anatomy and physiology of spray cut chrysanthemum pedicels, and expression of a caffeic acid 3-O-methyltransferase homologue. Postharvest Biology and Technology, 60, 244-250.
  21. He, S., Jouce, D. C., Irving, D. E. & Faragher, J. D. (2006). Stem end blockage in cut Grevillea ‘Crimson Yul-lo’ inflorecences. Postharvest Biology and Technology, 41, 78-84.
  22. Jones Jr, J. B. (2016). Hydroponics: a practical guide for the soilless grower. (2nd ed.). CRC press.
  23. JungSup, L., JongHan, P. & KyeongSuk, H. (2000). Effects of potassium silicate on growth, photosynthesis, and inorganic ion absorption in cucumber hydroponics. Journal of korean society of Horticultural  Science, 41, 480-484.
  24. Kamenidou, S., Cavins, T. & Marek, S. (2009). Evaluation of silicon as a nutritional supplement for greenhouse zinnia production. Scientia Horticulturae, 119, 297-301.
  25. Kamenidou, S., Cavins, T. J. & Marek, S. (2010). Silicon supplements affect floricultural quality traits and elemental nutrient concentrations of greenhouse produced gerbera. Scientia Horticulturae, 123, 390-394.
  26. Kaya, C., Kirnak, H., Higgs, D. & Saltali, K. (2002). Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae,  93, 65-74.
  27. Kaya, C., Tuna, L. & Higgs, D. (2006).Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29, 1469-1480.
  28. Lee, J. S., Park, J. H. & Han, K. S. (2000). Effects of potassium silicate on growth, photosynthesis, and inorganic ion absorption in cucumber hydroponics. Journal of Korean Society of Horticultural  Science, 41, 480-484.
  29. Liang, Y. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209, 217-224.
  30. Lichtenthaler, H. & Wellburn, A. (1983). Determinations of total carotenoids and chlorophylls b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592.
  31. Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78, 389-398.
  32. Mali, M. & Aery, N. C. (2008). Influence of silicon on growth, relative water contents and uptake of silicon, calcium and potassium in wheat grown in nutrient solution. Journal of Plant Nutrition, 31, 1867-1876.
  33. Miyake, Y. & Takahashi, E. (1986). Effect of silicon on the growth and fruit production of strawberry plants in a solution culture. Journal of Soil Science and Plant Nutrition, 32, 321-326.
  34. Mohaghegh, P., Shirvani, M. & Ghasemi, S. (2010). Influence of Silicon application on growth and yield of two cucumber cultivars in hydroponic system. Greenhouse Culturing Sciences and Techniques Journal, 1(1), 35-39. (in Farsi)           
  35. Moyer, C., Peres, N. A., Datnoff, L. E., Simonne, E. H. & Deng, Z. (2008). Evaluation of silicon for managing powdery mildew on gerbera daisy. Journal of Plant Nutrition, 31, 2131-2144.
  36. Peyvast, Gh., Zaree, M. R. & Samizadeh, H. (2008). Effect of silicon on nutrition element and nitrate amount in lettuce. Journal of Horticultural Science, 39(1), 1-8. (in Farsi)
  37. Poovaiah, B. W., Reddy, A. S. N. & Leopold, A. C. (1987). Calcium messenger system in plants. Critical Reviews in Plant Sciences, 6, 47-103.
  38. Prakash, N. B., Narayanswamy, C., Hanumantharaju, T. H., Shashidhar, H. E., Patil, S. U., Thippeshappa, G. N. & Datnoff, L. E. (2010). Effect of calcium silicate as a silicon source on growth and yield of rice in different acid Soils of Karnataka, South India. International Rice Research Notes, pp 117-119.
  39. Reezi, S., Kalantari, M. B. S., Okhovvat, S. M. & Jeong, B. R. (2009). Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt-stressed cut rose (Rosa × hybrida L.) ’Hot Lady’. African Journal of Biotechnology, 8, 1502-1508.
  40. Ritchie, S. W., Nguyen, H. T. & Scott Holaday, A. (1990). Leaf Water Content and Gas-Exchange Parameters of Two Wheat Genotypes Differing in Drought Resistance. Crop Science, 30, 105–111.
  41. Savvas, D., Manos, G., Kotsiras, A. & Souvaliotis, S. (2002). Effects of silicon and nutrient-induced salinity on yield, flower quality and nutrient uptake of gerbera grown in a closed hydroponic system. Annals of Botany, 76, 153-158.
  42. Takahashi, E., Ma, J. F. & Miyake, Y.  (1990). The possibility of silicon as an essential element for higher plants. Jornal of Agriculture and  Food Chemestry, 2, 99-102.
  43. Vanholme, R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. (2010). Lignin Biosynthesis and Structure. Plant Physiology, 153, 895-905.
  44. Wang, S. Y. & Galletta, G. J. (1998). Foliar application of potassium silicate induces metabolic changes in strawberry plants. Journal of Plant Nutrition, 21, 157-167.
  45. Wang, J. & Naser, N. (1994). Improved performance of carbon paste ampermeric biosensors through the incorporation of fumed silica. Electroanalysis, 6, 571- 575.
  46. Zhu, Z., Wei, G., Li, J., Qian, Q. & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167, 527-533.