بررسی ویژگی‌های فیتوشیمیایی گل سرخارگل [purpurea (L.) Moench Echinacea] در کشت مخلوط با لوبیا سبز و تاریخ‌های مختلف کشت تابستانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، بخش تحقیقات گیاهان دارویی، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 دانشیار، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

3 دانشیار، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

4 استاد، بخش تحقیقات گیاهان دارویی، مؤسسه تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

5 استاد، پژوهشکده ژنتیک و زیست‌فناوری کشاورزی طبرستان، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

چکیده

در بررسی عملکرد ماده خشک و ویژگی‌های فیتوشیمیایی گل سرخارگل‌‌های دو‌ساله در کشت مخلوط سرخارگل با لوبیا سبز و تاریخ‌های مختلف کشت تابستانه، آزمایشی به­‌‌صورت کرت‌های خرد‌شده در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار در سال زراعی 92-1391، طراحی و اجرا شد. تیمارهای آزمایش شامل آرایش کشت [کشت خالص سرخارگل، کشت خالص لوبیا سبز، کشت مخلوط جایگزینی با الگوهای کشت 1:1 (یک در میان) و 2:2 (دو در میان) سرخارگل و لوبیا سبز]، تاریخ‌های کشت [(10 تیر، 9 مرداد و 8 شهریور) در تابستان 1391] و کشت لوبیا سبز هم‌زمان با سبز‌شدن سرخارگل در بهار 1392 بود. نتایج آزمایش نشان داد که کشت زودهنگام سرخارگل‌ها در تابستان (10 تیر) موجب افزایش ماده خشک، مشتقات اسید کافئیک و محتوای فنل و فلاونوئید کل گل شد. در میان الگوهای کشت مخلوط نیز، کشت دو در میان سرخارگل و لوبیا سبز، موجب افزایش ماده خشک گل شد. در حالی‌که بیشترین مقدار اسید شیکوریک، اسید کلروژنیک و اکیناکوزید به‌ترتیب با 3/29، 4/2 و 3/2 میلی‌گرم بر گرم ماده خشک در کشت خالص سرخارگل‌ها به‌دست آمد. بیشترین مقدار فنل و فلاونوئید کل گل هم، در تاریخ کاشت 10 تیر و آرایش تک‌کشتی سرخارگل‌ها به‌دست آمد. در کل، می‌توان گفت که اگر هدف از کشت این گیاه افزایش تولید مشتقات اسید کافئیک باشد، تک‌کشتی و اگر هدف، بهبود تولید ماده خشک باشد، کشت مخلوط مزیت محسوب می‌شود. به علاوه، کشت زودتر این گیاه نیز از نظر تولید ماده خشک و مشتقات اسید کافئیک نسبت به کشت تأخیری، برتری دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of phytochemical properties of purple coneflower [Echinacea purpurea (L.) Moench] flowers in intercropping with green beans and different summer time planting dates

نویسندگان [English]

  • Samaneh Asadi-Sanam 1
  • Mohsen Zavareh 2
  • Hemmatollah Pirdashti 3
  • Fatemeh Sefidkon 4
  • Ghorban-Ali Nematzadeh 5
1 Assistant Professor, Department of Medicinal Plants, Research Institute of Forests and Rangelands, AREEO, Tehran, Iran
2 Associate Professor, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
3 Associate Professor, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
4 Professor, Department of Medicinal Plants, Research Institute of Forests and Rangelands, AREEO, Tehran, Iran
5 Professor, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

To evaluate dry matter yield and phytochemical properties of two years old purple coneflower [Echinacea purpurea (L.) Moench] flower in intercropping with green beans and different summer time planting dates, a randomized complete block design in split plot arrangement with three replications was conducted in Research Farm of Genetics and Agricultural Biotechnology Institute of Tabarestan in 2012-2013. Treatments included planting arrangements [coneflower and green bean monoculture, replacement intercropping planting with patterns of 1:1 and 2:2 ratio of coneflower: green beans], planting dates (June 30, July 30 and August 29), and cultivation of green beans in the spring of 2012 coincided with the emergence of coneflower.Results of the experiment showed that planting date of June 30 increased dry matter, caffeic acid derivates, total phenol and flavonoid contents of flower. Among the intercropping planting arrangements, patterns of 2:2 ratio of coneflower: green beans, increased flower dry matter. While the highest amount of cichoric acid, chlorogenic acid and echinacoside (29.3, 2.4 and 2.3 mg/g dry matter, respectively) were obtained in coneflower plants cultivated as sole crop. The maximum amount of total phenol and flavonoid contents of flower were detected in coneflower plants cultivated in June 30 and sole cropping pattern. Overall, it can be concluded that if the aim of cultivation of this plant is increasing production of caffeic acid derivatives, sole cropping is better than mixed cropping. However, for dry matter improvement, mixed cropping has more advantages. In addition, early cultivation of the crop is more suitable for caffeic acid derivatives and dry matter production than delayed planting.

کلیدواژه‌ها [English]

  • Caffeic acid derivates
  • Flower dry matter
  • Total Flavonoid
  • total phenol
  1. Ali Ehyaei, M. & Behbehani Zade, A. A. (1993). Methods of soil chemical analysis. Soil and Water Research Institute of Agricultural Extension and Education, 1, 128 pages. (in Farsi)
  2. Bagheri, M., Zaefarian, F., Akbarpour, V. & Asadi, G. A. (2012). Assessment of growth indices of soybean, vegetative sweet basil and borage in intercropping different ratios. Journal of Plant Production, 19(3), 1-26. (in Farsi)
  3. Barnes, J., Anderson, L. A., Gibbons, S. & Phillipson, J. D. (2005). Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. Journal of Pharmacology and Pharmacotherapeutics, 57, 929-954.
  4. Bauer, R. (2000). Chemistry, pharmacology and clinical application of Echinacea products. In: G. Mazza and B.D. Oomah (eds.), Herbs, Botanicals and Teas. Technomic publishing Company, Inc.: Lancaster, Pennsylvania, USA, pp. 45-73.
  5. Becker, H. & Hsieh, W. C. (1985). Chicoree-saure und deren derivate aus Echinacea arten. Zeitschrift für Naturforschung, 40, 585-587.
  6. Bergeron, C., Gafner, S., Batcha, L. L. & Angerhofer, C. K. (2002). Stabilization of caffeic acid derivatives in Echinacea purpurea. L. glycirin extract. Journal of Agricultural and Food Chemistry, 50, 3967-3970.
  7. Binns, S.E., Hudson, J., Merali, S. & Arnason, J. T. (2002). Antiviral activity of characterized extracts from Echinacea spp. (Heliantheae: Asteraceae) against herpes simplex virus (HSV-I). Planta Medica, 68, 780-783.
  8. Boo, H. O., Chon, S. U. & Lee, S. Y. (2006). Effects of temperature and plant growth regulators on anthocyanin synthesis and phenylalanine ammonia-lyase activity in chicory (Cichorium intybus L.). Journal of Horticultural Science & Biotechnology, 81(3), 478-482.
  9. Cech, N. B., Eleazer, M. S., Shoffner, L. T., Crosswhite, M. R., Davis, A. C. & Mortenson, A. M. (2006). High performance liquid chromatography/electrospray ionization mass spectrometry for simultaneous analysis of alkamides and caffeic acid derivatives from Echinacea purpurea extracts. Journal of Chromatography A, 7, 1085-1097.
  10. Chen, C. L., Zhang, S. C. & Sung, J. M. (2008). Biomass and caffeol phenols production of Echinacea purpurea grown in Taiwan. Journal of Experimental Agriculture, 44, 497-507.
  11. Du, G., Li, M., Ma, F. & Liang, D. (2009). Antioxidant capacity and the relationship with polyphenol and vitamin C in actinidia fruits. Food Chemistry, 113, 557-562.
  12. Duke, S. O. & Naylor, A. W. (1974). Effect of light on phenylalanine ammonia-lyase activity in darke-grown Zea mays (L.) seedlings. Plant Science Letters, 2, 289-293.
  13. Glowniak, K., Zgórka, G. & Kozyra, M. (1996). Solid-phase extraction and reverse-phase high-performance liquid chromatography of free phenolic acids in some Echinacea species. Journal of Chromatography A, 730, 25-29.
  14. Gray, D. E., Pallardy, S. G., Garrett, H. E. & Rottinghaus, G. E. (2002). Acute drought stress and plant age effects on alkamides and phenolic acid content in purple coneflower roots. Planta Medica, 69, 50-55.
  15. Hikosaka, K. & Hirose, T. (1997). Leaf angle as a strategy for light competition: optimal and evolutionarily stable light extinction coefficient within a canopy. Ecoscience, 4, 501-507.
  16. Hitchcock, C. L. & Cronquist, A. (1973). Flora of the Pacific Northwest, University of Washington Press, Seattle.
  17. Hu, C. & Kitts, D. D. (2000). Studies on the antioxidant of Echinacea root extract. Journal of Agricultural and Food Chemistry, 48, 1466-1472.
  18. Kishore, G., Ranjan, S., Pandey, A. & Gupta, S. (2010). Influence of altitudinal variation on the antioxidant potential of tartar buckwheat of western Himalaya. Food Science and Biotechnology, 19, 1355-1363.
  19. Klindt Andersen, M., Hauggaard-Nielsen, H., Weiner, J. & Steen Jensen, E. (2007). Competitive dynamics in two- and three-component intercrops. Journal of Applied Ecology, 44, 545-551.
  20. Knee, M. & Thomas, L. C. (2002). Light utilization and competition between Echinacea purpurea, Panicum virgatum and Ratibida pinnata under greenhouse and field conditions. Ecological Research, 17, 591-599.
  21. Kong, L., Yuan, D., Chen, Y., Yin, J., Makino, T., Uno, T., Zhang, S. & Kano, Y. (2006). Quality evaluation of Echinacea species cultivated in China. Asian Journal of Traditional Medicines, 1, 25-30.
  22. Koocheki, A., Shabahang, J., Khorramdel, S. & Amin Ghafouri, A. (2012). Row intercropping of borage (Borago officinalis L.) with bean (Phaseolus vulgaris L.) on possible evaluating of the best strip width and assessing of its ecological characteristics. Agroecology, 4, 1-11. (in Farsi)
  23. Kreft, S. (2005) Cichoric acid content and biomass production of Echinacea purpurea plants cultivated in Slovenia. Pharmaceutical Biology, 43, 662-665.
  24. Lin, S. D., Sung, J. M. & Chen, C. L. (2011). Effect of drying and storage conditions on caffeic acid derivatives and total phenolics of Echinacea Purpurea grown in Taiwan. Food Chemistry, 125, 226-231.
  25. Lopez–Bellido, F. J., Lopez-Bellido, R. J., Khalil, S. K. & Lopez-Bellido, L. (2008). Effect of planting date on winter Kabuli Chickpea growth and yield under rainfed mediterranean conditions. Agronomy Journal, 100, 957-964
  26. Luo, X. B., Chen, B., Yao, S. Z. & Zeng, J. G. (2003). Simultaneous analysis of caffeic acid derivatives and alkamides in roots and extracts of Echinacea purpurea by high-performance liquid chromatography-photodiode array detection-electrospray mass spectrometry. Journal of Chromatography A, 986, 73-81.
  27. Miller, C. S. (2004). The genus Echinacea. Medicinal and Aromatic Plants. Industrial Profiles. CRC Press. pp. 270.
  28. Min, H. M., Trick, H. N. & Rajasheka, E. B. (2009). Secondary metabolism and antioxidant are involved in environmental adaptation and stress tolerance in lettuce. Journal of Plant Physiology, 166, 180-191.
  29. Mirhashemi, S. M., Koocheki, A., Parsa, M. & Nassiri Mahallati, M. (2009). Evaluation of growth indices of Ajowan and Fenugreek in pure culture and intercropping based on organic agriculture. Iranian Journal of Field Crops Research, 7, 685-694. (in Farsi)
  30. Mobin, M., Wu, C. H., Tewari, R. K. & Paek, K. Y. (2015). Studies on the glyphosate-induced amino acid starvation and addition of precursors on caffeic acid accumulation and profiles in adventitious roots of Echinacea purpurea (L.) Moench. Plant Cell, Tissue and Organ Culture, 120, 291-301.
  31. Mohsen-Abadi, GH. R. & Jahansooz, M. R. (2013). Evaluation of yield and radiation use efficiency in intercropping of barley and vetch in different nitrogen levels. Iranian Journal of Field Crop Science, 44, 419-427. (in Farsi)
  32. Nachigera, G. M., Ledent, J. F. & Draye, X. (2008). Shoot and root competition in potato/maize intercropping: effects on growth and yield. Environmental and Experimental Botany, 64, 180-188.
  33. Paz, J.O., Woli, P., Garcia, A. & Hoogenboom, G. (2012). Cotton yields as influenced by ENSO at different planting dates and spatial aggregation levels. Agricultural Sysytems, 111, 45-52.
  34. Pellati, F., Benvenuti, S., Magro, L., Melegari, M. & Soragni, F. (2004). Analysis of phenolic compounds and radical scavengin activity of Echinacea spp. Journal of Pharmaceuticalan Biomedical Analysis, 35, 289-301.
  35. Percival, S. S. (2000). Use of Echinacea in medicine. Biochemical Pharmacology, 60, 155-158.
  36. Perry, N. B., Burgess, E. J. & Glennie, V. (2001). Echinacea standardization: analytical methods for phenolic compounds and typical levels in medicinal species. Journal of Agricultural and Food Chemistry, 49, 1702-1706.
  37. Pietta, P., Mauri, P. & Bauer, R. (1998). MECK analysis of different Echinacea species. Planta Medica, 64, 649-652.
  38. Pouramir, F., Nassiri Mahallati, M., Koocheki, A. & Ghorbani, R. (2010). Assessment of Sesame and Chickpea yield and yield components in the replacement series intercropping. Iranian Journal of Field Crops Research, 8, 747-757. (in Farsi)
  39. Runhle, E. S., Heins, R. D., Cameron, A. C. & Carlson, W. H. (2001). Photocontrol of flowering and stem extension of the intermediate-day plant Echinacea purpurea. Physiologia Plantarum, 112, 433-441.
  40. Sabet, M. S., Salmanzadeh, M. & Moieni, A. (2017). Identification of gene sequences involved in chicoric acid biosynthesis pathway in Echinacea purpurea through RNA-SEQ transcriptome analysis. Journal of Plant Physiology & Pathology, 5, 5.
  41. Sabra, A., Adam, L., Daayf, F. & Renault, S. (2012). Salinity-induced changes in caffeic acid derivatives, alkamides and ketones in three Echinacea species. Environmental and Experimental Botany, 77, 234-241.
  42. SAS Institute. (2002). SAS/STAT user’s Guide. Release G. 12. SAS Institute Cary. North Carolina, USA.
  43. Schieffer, G. W. & Kohn, M. (2002). HPLC assay of Echinacea purpurea/Goldenseal (Hydrastis canadensis) combination formulations for phenolic acids, alkylamides, and alkaloids. Journal of Liquid Chromatography and amp Related Technologies, 25, 263-274.
  44. Seidler-Lozykowska, K. & Dabrowska, J. (2003). Yield and polyphenolic acids content in purple coneflower (Echinacea purpurea Moench.) at different growth stages. Journal of Herbs, Spices and Medicinal Plants, 10, 7-12.
  45. Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. S. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin Ciocalteau Reagent. Methods in Enzymology, 299, 152-178.
  46. Stanisavijevic, I., Stojicevic, S., Velickovic, D., Veljkovic, V. & Lazic, M. (2009). Antioxidant and antimicrobial activities of Echinacea (Echinacea purpurea L.) extracts obtained by classical and ultrasound extraction. Biotechnology and Bioengineering, Bioeng, 17, 478-483.
  47. Thomsen, M. O., Frette, X. C., Christensen, K. B., Christensen, L. P. & Grevsen, K. (2012). Seasonal variations in the concentrations of lipophilic compounds and phenolic acids in the roots of Echinacea purpurea and Echinacea pallid. Journal of Agricultural and Food Chemistry, 60, 12131-12141.
  48. Thygesen, L., Thulin, J., Mortensen, A., Skibsted, L. H. & Molgaard, P. (2007). Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea alone and in combination. Food Chemistry, 101, 74-81.
  49. Tsai, Y., Chiou, S., Chan, K., Sung, J. & Lin, S. (2012). Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. Food Science and Technology International, 46, 169-176.
  50. Wills, R. B. H. & Stuart, D. L. (1999). Alkylamide and cichoric acid levels in Echinacea purpurea grown in Australia. Food Chemistry, 67, 385-388.
  51. Wu, C. H., Murthy, H. N., Hahn, E. J., Lee, H. L. & Paek, K. Y. (2007). Efficient extraction of caffeic acid derivatives from adventitious roots of Echinacea purpurea. Czech Journal of Food Sciences, 26, 254-258.