تأثیر تنش کم‌آبی بر خصوصیات عملکردی، ظرفیت آنتی‌اکسیدانی و متابولیت‌های نعناع‌فلفلی (Mentha piperita L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق دکتری، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

2 دانشیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

3 استادیار، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج

4 استاد، گروه زیست‌شناسی، دانشگاه تورین، ایتالیا

چکیده

گیاهان دارویی منابع ارزشمند آنتی­اکسیدان­های طبیعی از قبیل برخی ترپنوئیدها و ترکیبات فنلی هستند و دارای پتانسیل بالا به­عنوان جایگزینی مناسب برای آنتی­اکسیدان­های سنتزی در کاهش استرس اکسیداتیو می­باشند. دمنوش نعناع­فلفلی (Mentha piperita) یکی از غنی­ترین منابع آنتی­اکسیدان در دنیا به­شمار می­آید. با استفاده از کم­آبی می­توان خاصیت آنتی­اکسیدانی این گیاه را تغییر داد. در این پژوهش، گیاهان نعناع­فلفلی به­مدت چهار ماه در معرض سه سطح آبیاری (شاهد، تنش ملایم و شدید به­ترتیب100، 75 و 50 درصد ظرفیت­زارعی) قرار گرفتند. هر دو سطح تنش کم­آبی، باعث کاهش معنی­دار ارتفاع بوته، وزن تر و خشک برگ و طول و عرض برگ شد. همچنین در اثر تنش کم­آبی، مقدار ترکیب­های فنولیک، میزان متابولیت­های ثانویه (فنل کل و فلاونوئید کل) و پتانسیل آنتی‌اکسیدانی نعناع­فلفلی به­صورت معنی­داری افزایش یافت. در بین دو سطح تنش مورد استفاده، تنش شدید تأثیر بیشتری را نشان داد. برخی از ترکیب­های فنولیک مانند کوئرستین، کومارین و لوتئولین فقط در شرایط تنش کم­آبی شناسایی گردیدند. همچنین تنش کم­آبی تغییر مقادیر برخی اسیدهای آمینه و اسیدهای چرب غیر­اشباع را به­دنبال داشت. درکل تنش کم­آبی منجر به افزایش پتانسیل آنتی‌اکسیدانی عصاره آبی و برخی ترکیب­های فعال زیستی نعناع­فلفلی گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of water deficit stress on yield characteristics, antioxidant capacity and metabolite profile of peppermint (Mentha piperita L.)

نویسندگان [English]

  • Gholamreza Abdi 1
  • Majid Shokrpour 2
  • Seyed Alireza Salami 3
  • Cinzia M. Bertea 4
1 Former Ph. D. Student, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
2 Associate Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Assistant Professor, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
4 Professor, Plant Physiology Unit, Department of Plant Biology, University of Turin, Innovation Centre, Via Quarello 11/A 10135 Turin, Italy
چکیده [English]

Medicinal Plants are almost reach sources of natural antioxidants such as terpenoids and phenolic compounds and have great potential as an alternative for synthetic antioxidants against oxidative stresses. Peppermint (Mentha piperita) infusion is a valuable worldwide source of antioxidants. The antioxidant property can be enhanced by inducing abiotic stresses. This experiment was conducted to evaluate prolong (4 months) water deficit stress (no stress, mild stress and severe stress as 100, 75 and 50% of field capacity, respectively) on cultivated peppermint on plant growth, secondary metabolite profile and antioxidant capacity of peppermint infusions. Both water deficit stress treatment decresed plant height, leaf wet and dry weight and leaf size significantly. Also, water deficit stress increased antioxidant capacity, total phenolic and flavonoid contents significantly. Some phenolic compounds such as quercetin, coumaric acid and luteolin were detected only in water-deficit conditions. Also, the amount of some identified amino acids and unsaturated fatty acids were changed under water deficit stress. Therefore, inducing water stress can enhance the biological value of peppermint and improve bioactive compounds and the antioxidant capacity of peppermint extract.

کلیدواژه‌ها [English]

  • Biological value
  • flavonoid
  • Infusion
  • phenolic compounds
  • Rosmarinic acid
  1. Abbaszadeh, B., Sharifi, A. E., Ardakani, M. R., Lebaschi, M. H., Safikhani, F. & Naderi, H. B. M. (2006(. Effect of application methods of nitrogen fertilizer on essential oil content and composition of balm (Melissa officinalis L.) under field condition. Iran Journal of Medicinal and Aromatic Plants Research, 22, 124-131
  2. Agati, G., Azzarello, E., Pollastri, S. & Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Science, 196, 67-76.
  3. Ahmed, I. M., Cao, F., Han, Y., Nadira, U. A., Zhang, G. & Wu, F. (2013). Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress. Food Chemistry, 141(3), 2743-2750.
  4. Alishah, H., Heidari, R., Hassani, A. & Asadi Dizaji, A. (2006). Effect of water stress on some morphological and biochemical characteristics of purple basil (Ocimum basilicum). Journal of Biological Sciences, 6(4), 763-767.
  5. Ashraf, M. & Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216.
  6. Barbalho, S. M., Machado, F. M. V. F., Oshiiwa, M., Abreu, M., Guiger, E. L., Tomazela, P. & Goulart, R. A. (2011). Investigation of the effects of peppermint (Mentha piperita) on the biochemical and anthropometric profile of university students. Food Science and Technology (Campinas), 31(3), 584-588.
  7. Barja, G. (2014). The mitochondrial free radical theory of aging. In: Progress in molecular biology and translational science (Vol. 127, pp. 1-27). Academic Press.
  8. Bassi, R. & Sharma, S. S. (1993). Proline accumulation in wheat seedlings exposed to zinc and copper. Phytochemistry, 33(6), 1339-1342.
  9. Barnett, N. M. & Naylor, A. W. (1966). Amino acid and protein metabolism in Bermuda grass during water stress. Plant Physiology, 41(7), 1222-1230.
  10. Benhassaine‐Kesri, G., Aid, F., Demandre, C., Kader, J. C. & Mazliak, P. (2002). Drought stress affects chloroplast lipid metabolism in rape (Brassica napus) leaves. Physiologia Plantarum, 115(2), 221-227.
  11. Blum, A. (2011). Drought resistance and its improvement. In: Plant Breeding for Water-Limited Environments (pp. 53-152). Springer New York.
  12. Bohnert, H. J. & Jensen, R. G. (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology, 14(3), 89-97.
  13. Brand-Williams, W., Cuvelier, M. E. & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25-30.
  14. Chakraborty, U., Dutta, S. & Chakraborty, B. N. (2002). Response of tea plants to water stress. Biologia Plantarum, 45(4), 557-562.
  15. Canistro, D., Boccia, C., Falconi, R., Bonamassa, B., Valgimigli, L., Vivarelli, F., ... & Zaccanti, F. (2014). Redox-based flagging of the global network of oxidative stress greatly promotes longevity. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 70(8), 936-943.
  16. Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signaling & Behavior, 3(3), 156-165.
  17. Drossopoulos, J. B., Karamanos, A. J. & Niavis, C. A. (1985). Changes in free amino compounds during the development of two wheat cultivars subjected to different degrees of water stress. Annals of Botany, 56(3), 291-305.
  18. Farahani, H. A., Lebaschi, M. H. & Hamidi, A. (2008). Effects of arbuscular mycorrhizal fungi, phosphorus and water stress on quantity and quality characteristics of coriander. Advances in Natural and Applied Sciences, 2(2), 55-60.
  19. Fecka, I. & Turek, S. (2007). Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, Melissa, and sage. Journal of Agricultural and Food Chemistry, 55(26), 10908-10917.
  20. Ferrari, S. (2010). Biological elicitors of plant secondary metabolites: Mode of action and use in the production of nutraceutics. In: Bio-Farms for Nutraceuticals (pp. 152-166). Springer US.
  21. Ferrario-Méry, S., Valadier, M. H. & Foyer, C. H. (1998). Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant Physiology, 117(1), 293-302.
  22. Ghasemzadeh, A. & Jaafar, H. Z. (2012). Effect of salicylic acid application on biochemical changes in ginger (Zingiber officinale Roscoe). Journal of Medicinal Plants Research, 6(5), 790-795.
  23. Gigon, A., Matos, A. R., Laffray, D., Zuily-Fodil, Y. & Pham-Thi, A. T. (2004). Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Annals of Botany, 94(3), 345-351.
  24. Good, A. G. & Zaplachinski, S. T. (1994). The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus. Physiologia Plantarum, 90(1), 9-14.
  25. Hale, B. K., Herms, D. A., Hansen, R. C., Clausen, T. P. & Arnold, D. (2005). Effects of drought stress and nutrient availability on dry matter allocation, phenolic glycosides, and rapid induced resistance of poplar to two lymantriid defoliators. Journal of Chemical Ecology, 31(11), 2601-2620.
  26. Hare, P. D., Cress, W. A. & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment, 21(6), 535-553.
  27. Hussain, A. I., Anwar, F., Nigam, P. S., Ashraf, M. & Gilani, A. H. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. Journal of the Science of Food and Agriculture90(11), 1827-1836.
  28. Khaki, A., Jamshidi, M., Ahmadi Ashtiani, H., Rezazadeh, SH., Fathi Azad, F. & Mazandarani, M. (2005). Evaluation and comparing the antioxidant activity and phenol content of some Mazandaran indigenous plant species. Medicinal Plant Magazine, 34, 177-183. (in Farsi)
  29. Karamanos, A. J. (1995). The involvement of proline and some metabolites in water stress and their importance as drought resistance indicators. Bulgarian Journal of Plant Physiology, 21(2-3), 98-110.
  30. Khorasaninejad, S., Mousavi, A., Soltanloo, H., Hemmati, K. & Khalighi, A. (2011). The effect of drought stress on growth parameters, essential oil yield and constituent of Peppermint (Mentha piperita L.). Journal of Medicinal Plants Research, 5(22), 5360-5365.
  31. Kuznetsov, V. V. & Shevyakova, N. I. (1999). Proline under stress: biological role, metabolism, and regulation. Russian Journal of Plant Physiology, 46(2), 274-287.
  32. Letchamo, W., Xu, H. L. & Gosselin, A. (1995). Photosynthetic potential of Thymus vulgaris selections under two light regimes and three soil water levels. Scientia Horticulturae, 62(1), 89-101.
  33. Liu, M., Li, X. Q., Weber, C., Lee, C. Y., Brown, J. & Liu, R. H. (2002). Antioxidant and antiproliferative activities of raspberries. Journal of Agricultural and Food Chemistry, 50(10), 2926-2930.
  34. Løvdal, T., Olsen, K. M., Slimestad, R., Verheul, M. & Lillo, C. (2010). Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry, 71(5), 605-613.
  35. Marcocci, L., Packer, L., Droy-Lefaix, M. T., Sekaki, A. & Gardès-Albert, M. (1994). Antioxidant action of Ginkgo biloba extract EGb 761. Methods in Enzymology, 234, 462-475.
  36. Merely, P. G. F., Rocha-Guzmán, N. E., Mercado-Silva, E., Loarca-Piña, G. & Reynoso-Camacho, R. (2014). Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions. Food Chemistry, 156, 273-278.
  37. McKay, D. L. & Blumberg, J. B. (2006). A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research, 20(8), 619-633.
  38. Mimica-Dukić, N., Božin, B., Soković, M., Mihajlović, B. & Matavulj, M. (2003). Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Medica, 69(05), 413-419.
  39. Monreal, J. A., Jimenez, E. T., Remesal, E., Morillo-Velarde, R., García-Mauriño, S. & Echevarría, C. (2007). Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany, 60(2), 257-267.
  40. Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663.
  41. Naidu, B. P., Paleg, L. G., Aspinall, D., Jennings, A. C. & Jones, G. P. (1991). Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry, 30(2), 407-409.
  42. Oliveira, A. P., Pereira, J. A., Andrade, P. B., Valentão, P., Seabra, R. M. & Silva, B. M. (2008). Organic acids composition of Cydonia oblonga Miller leaf. Food Chemistry, 111(2), 393-399.
  43. Patel, B. S., Patel, K. P., Patel, I. D. & Patel, M. I. (2000). Response of fennel (Foeniculum vulgare) to irrigation, nitrogen and phosphorus. Indian Journal of Agronomy, 45(2), 429-432.
  44. Polumbryk, M., Ivanov, S. & Polumbryk, O. (2013). Antioxidants in food systems. Mechanism of action. Ukrain Journal of Food Science, 1, 15-40.
  45. Rahmani, N., Aliabadi, F. H. &Valadabadi S. A. R. (2008). Effects of nitrogen on oil yield and its component of calendula (Calendula officinalis L.) in drought stress conditions. Abstracts Book of the World Congress on Medicinal and Aromatic Plants, South Africa, p 364.
  46. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237.
  47. Rhodes, D., Nadolska-Orczyk, A. & Rich, P. J. (2002). Salinity, osmolytes and compatible solutes. In Salinity: Environment-plants-molecules (pp. 181-204). Springer Netherlands.
  48. Sarker, A. M., Rahman, M. S. & Paul, N. K. (1999). Effect of soil moisture on relative leaf water content, chlorophyll, proline and sugar accumulation in wheat. Journal of Agronomy and Crop Science, 183(4), 225-229.
  49. Sakihama, Y., Cohen, M. F., Grace, S. C. & Yamasaki, H. (2002). Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology, 177(1), 67-80.
  50. Sangavan, N. E. E. L. A. M., Abad Farooqi, A. H. & Singh Sangwan, R. (1994). Effect of drought stress on growth and essential oil metabolism in lemongrasses. New Phytologist, 128(1), 173-179.
  51. Schat, H., Sharma, S. S. & Vooijs, R. (1997). Heavy metal‐induced accumulation of free proline in a metal‐tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum, 101(3), 477-482.
  52. Sharma, S. S. & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711-726.
  53. Singh, T. N., Paleg, I. G. & Aspinall, D. (1973). Stress metabolism I. Nitrogen metabolism and growth in the barley plant during water stress. Australian Journal of Biological Sciences, 26(1), 45-56.
  54. Singh, R., Shushni, M. A. & Belkheir, A. (2015). Antibacterial and antioxidant activities of Mentha piperita L. Arabian Journal of Chemistry, 8(3), 322-328.
  55. Singleton, V. L. & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.
  56. Stewart, C. R., Boggess, S. F., Aspinall, D. & Paleg, L. G. (1977). Inhibition of proline oxidation by water stress. Plant Physiology, 59(5), 930-932.
  57. Taheri, A. M., Daneshian, J., Valadabadi, S. A. R. & Aliabadi, F. H. (2008). Effects of water deficit and plant density on morphological characteristics of chicory (Cichorium intybus L.). Abstracts Book of 5th International crop science congress and exhibition, p 26.
  58. Tian, X. & Lei, Y. (2006). Nitric oxide treatment alleviates drought stress in wheat seedlings. Biologia Plantarum, 50(4), 775-778.
  59. Yadav, R. K., Sangwan, R. S., Sabir, F., Srivastava, A. K. & Sangwan, N. S. (2014). Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiology and Biochemistry, 74, 70-83.
  60. Yordanov, I., Velikova, V. & Tsonev, T. (2003(. Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology, 187-206.
  61. Zingaretti, S. M., Inácio, M. C., de Matos Pereira, L., Paz, T. A. & de Castro França, S. (2013). Water stress and agriculture. In: Responses of Organisms to Water Stress. InTech.