بهبود جذب عناصر غذایی، شاخص‌های رشد و عملکرد دو تودۀ خیار بومی آذربایجان شرقی از طریق پایه‌های پیوندی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، دانشکده کشاورزی، دانشگاه تبریز

2 دانشیار، دانشکده کشاورزی، دانشگاه تبریز

چکیده

به‌منظور بررسی تأثیر پیوند خیار روی پایه­های­ تجاری­ کدو آزمایشی در قالب طرح بلوک­های کامل تصادفی شامل هشت تیمار با سه تکرار به‌صورت مزرعه­ای در ایستگاه تحقیقاتی دانشکدۀ کشاورزی دانشگاه تبریز در سال 1394 انجام شد. دو توده خیار بومی آذربایجان شرقی ( به ترتیب باسمنج و گونی) و یک رقم تجاری (ماهان) روی دو پایۀ تجاری کدو (به ترتیب شینتوزا و روت­پاور) پیوند شدند. تیمارهای آزمایش شامل ترکیب­های پیوندی باسمنج/ شینتوزا، باسمنج/ روت­پاور، گونی/ شینتوزا، گونی/ روت­پاور و ماهان/ روت­پاور و خیارهای بدون پیوندی باسمنج، گونی و ماهان بودند. گیاهان با استفاده از روش نیمانیم تک‌لپه‌ای پیوند شدند. نتایج نشان داد، پایه­ها تأثیر معنی­دار مثبتی روی شاخص‌های رویشی شامل سطح برگ، شاخص سبزینه (­کلروفیل)، طول ساقه، وزن خشک اندام‌های هوایی، شمار میوه و عملکرد میوه در تک بوته داشتند. بیشترین غلظت نیتروژن برگ در ترکیب پیوندی ماهان/ روت­پاور  و کمترین آن در خیار باسمنج مشاهده شد. بیشترین غلظت پتاسیم و فسفر اندام‌های هوایی در ترکیب پیوندی ماهان/ روت­پاور و کمترین غلظت پتاسیم و فسفر اندام‌های هوایی در خیار باسمنج مشاهده شد. بیشترین غلظت نیترات برگ در خیار باسمنج و کمترین در ترکیب پیوندی ماهان/ روت­پاور دیده شد. بیشترین غلظت ساکارز برگ  و قند کل برگ در ترکیب پیوندی ماهان/ روت­پاور مشاهده شد. در ترکیب­های پیوندی تأثیر پایه­ها روی غلظت نیتروژن، فسفر و پتاسیم اندام‌های هوایی و شاخص­های عملکرد در بیشتر صفات همسان بود. پایه­های شینتوزا و روت­پاور به دلیل افزایش غلظت نیتروژن، فسفر و پتاسیم اندام‌های هوایی موجب بهبود عملکرد و شاخص­های رشد شدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improvement of nutrient uptake, growth index and yield in two populations of East Azerbaijan cucumber by grafting rootstocks

نویسندگان [English]

  • Edris Hajali 1
  • Sahebali Bolandnazar 2
  • Jaber Panahande 2
1 Former M. Sc. Student, Faculty of Agriculture, University of Tabriz, East Azarbaijan, Iran
2 Associate Professor, Faculty of Agriculture, University of Tabriz, East Azarbaijan, Iran
چکیده [English]

In order to evaluate the effect of grafting of cucumber on commercial cucurbits rootstocks, an experiment was carried out in a completely randomized block design including eight treatments with three replicates in the field of Agricultural Research Station, University of Tabriz infield Conditions at 2015. Two populations of Azerbaijan cucumber (Basmenj andGouney, respectively) and a commercial cultivar of cucumber (Mahan) were grafted on two commercial cucurbits rootstocks (Shintozwa and Routpower, respectively).Treatments of experiment were including grafted combination of Basmenj/ Shintozwa, Basmenj/ Routpower, Gouney / Shintozwa, Gouney / Routpower, Mahan / Routpower, non grafted Basmenj, Gouney and Mahan cucumbers. Plants were grafted by single cotyledon splice grafting techniques. Results showed that rootstocks had a significant effect on growth and yield index including leaf area, cholorophyll index, stem length, shoot dry weight, fruits number per plant and yield per plant.The highest N concentrations in leaf wasobserved in grafted combination Mahan/ Routpower and thelowest inBasmenj.The highest K and P concentration inshootwere observed in grafted combination Mahan/ Routpower while the lowestK and P concentrations in shoot were observedinBasmenj. The highest nitrate concentration in leaf was observed inBasmenj and the lowest in grafted combination. Mahan/ Routpower. The highest concentration of sucrose and total soluble sugar in leaf were observed in grafted combination of Mahan/Routpower. In grafted combinations, the effect of rootstocks onN, P and Kconcentrations in shoot and yield indexin most traits were similar andShintowza and Routpower improved yield and growth index,because of increasing concentrations of N, P and K in shoots.

کلیدواژه‌ها [English]

  • Commercial cucurbits rootstocks
  • cucumber grafting
  • single cotyledon splice grafting
  1. Almaliotis, D., Therios, I. & Karatassiou, M. (1996, September). Effects of nitrogen fertilization on growth, leaf nutrient concentration and photosynthesis in three peach cultivars. In: II International Symposium on Irrigation of Horticultural Crops 449 (pp. 529-534).
  2. Aloni, B., Karni, L., Deventurero, G., Levin, Z., Cohen, R., Katzir, N. & Joel, D. M. (2008). Physiological and biochemical changes at the rootstock-scion interface in graft combinations between Cucurbita rootstocks and a melon scion. The Journal of Horticultural Science and Biotechnology, 83(6), 777-783.
  3. Ballesta, M. C. M., López, C. A., Muries, B., Cadenas, C. M. & Carvajal, M. (2010). Physiological aspects of rootstock–scion interactions: a Review. Scientia Horticulturae, 127, 112-118.
  4. Buysse, J. A. N. & Merckx, R. (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44(10), 1627-1629.
  5. Colla, G., Rouphael, Y., Cardarelli, M., Salerno, A. & Rea, E. (2010a). The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environmental and Experimental Botany, 68(3), 283-291.
  6. Colla, G., Rouphael, Y., Rea, E. & Cardarelli, M. (2012). Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulturae, 135, 177-185.
  7. Colla, G., Suárez, C. M. C., Cardarelli, M. & Rouphael, Y. (2010b). Improving nitrogen use efficiency in melon by grafting. HortScience, 45(4), 559-565.
  8. Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R. & Zhang, X. (2008). Grafting effects on vegetable quality. HortScience, 43(6), 1670-1672.
  9. Han, J. S., Park, S., Shigaki, T., Hirschi, K. D. & Kim, C. K. (2009). Improved watermelon quality using bottle gourd rootstock expressing a Ca2+/H+ antiporter. Molecular breeding, 24(3), 201-211.
  10. Hasandokht, M. R. & Nosrati, S. Z. (2010). Effect of transplant age and fruit pruning on earliness and total yield of greenhouse cucumber (Cucumis sativus L. cv. Sultan). Journal of Plant Ecophysiology, 2(1), 21-25.
  11. Hoyos Echebarría, P. (2000, March). Influence of different rootstocks on the yield and quality of greenhouses grown cucumbers. In: V International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Suistainable Technologies, 559 (pp. 139-144).
  12. Hu, C., Zhu, Y., Yang, L., Chen, S. & Huang, Y. (2005). Comparison of photosynthetic characteristics of grafted and ownroot seedlings of cucumber under low temperature circumstances. Acta Botanica Boreali-Occidentalia Sinica, 26(2), 247-253.
  13. Huang, Y., Li, J., Hua, B., Liu, Z., Fan, M. & Bie, Z. (2013). Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Scientia Horticulturae, 149, 80-85.
  14. Huang, Y., Tang, R., Cao, Q. & Bie, Z. (2009). Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae, 122(1), 26-31.
  15. Humphries, E. C. (1956). Mineral components and ash analysis. In Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis (pp. 468-502). Springer Berlin Heidelberg
  16. Khelil, A., Menu, T. & Ricard, B. (2007). Adaptive response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant physiology and Biochemistry, 45(8), 551-559.
  17. Lee, J. M. (1994). Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience, 29(4), 235-239.
  18. Lee, J. M. & Oda, M. (2010). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews, Volume 28, 61-124.
  19. Lee, J. M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L. & Oda, M. (2010). Current status of vegetable grafting: Diffusion, grafting techniques, automation. Scientia Horticulturae, 127(2), 93-105.
  20. Liu, Y. F., Qi, H. Y., Bai, C. M., Qi, M. F., Xu, C. Q., Hao, J. H., ... & Li, T. L. (2011). Grafting helps improve photosynthesis and carbohydrate metabolism in leaves of muskmelon. International journal of biological sciences, 7(8), 1161
  21. Marukawa, S. & Takatsu, I. (1969). Studies on the selection of Cucurbita spp. as cucumber stock. 1. Compatibility, ability to tolerate low-temperature conditions and yield of black prickly cucumber. Bulletin of the Ibaraki Agricultural Experiment Station, 3, 11-18.
  22. Miguel, A., Maroto, J. V., San Bautista, A., Baixauli, C., Cebolla, V., Pascual, B., ... & Guardiola, J. L. (2004). The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Scientia Horticulturae, 103(1), 9-17.
  23. Mohsenian Sisakht, Y. & Roosta, H. R. (2014). Effect of eggplant, field tomato, datura, orange nightshade and Iranian tobacco rootstocks on iron and chlorophyll concentrations in grafted tomato. Journal of Science & Technology, Greenhouse Culture, Vol. 5, No. 17, Spring 2014. (in Farsi)
  24. Mohsenian, Y. & Roosta, H. R. (2015). Effects of grafting on alkali stress in tomato plants: datura rootstock improve alkalinity tolerance of tomato plants. Journal of Plant Nutrition, 38(1), 51-72.
  25. Mohsenian, Y., Roosta, H. R., Karimi, H. R. & Esmaeilizade, M. (2012). Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants. Photosynthetica, 50(3), 411-421.
  26. Olsen, S. R. & Sommers, L. E. (1982). Phosphorus. P 403-430, In: Page, A.L. (Eds.), Methods of Soil Analysis. Part 2. 2nd ed. Argon. Mongr. 9. ASA and SSSA, Madison, WI.
  27. Pulgar, G., Villora, G., Moreno, D. A. & Romero, L. (2000). Improving the mineral nutrition in grafted watermelon plants: nitrogen metabolism. Biologia Plantarum, 43(4), 607-609.
  28. Roosta, H. R. & Karimi, H. R. (2012). Effects of alkali-stress on ungrafted and grafted cucumber plants: using two types of local squash as rootstock. Journal of plant nutrition, 35(12), 1843-1852.
  29. Rouphael, Y., Cardarelli, M., Rea, E. & Colla, G. (2008). Grafting of cucumber as a means to minimize copper toxicity. Environmental and Experimental Botany, 63(1), 49-58..
  30. Rouphael, Y., Cardarelli, M., Rea, E. & Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50(2), 180-188
  31. Ruiz, J. M. & Romero, L. (1999). Nitrogen efficiency and metabolism in grafted melon plants. Scientia Horticulturae, 81(2), 113-123.
  32. Ruiz, J. M., Belakbir, A., López-Cantarero, I. & Romero, L. (1997). Leaf-macronutrient content and yield in grafted melon plants. A model to evaluate the influence of rootstock genotype. Scientia Horticulturae, 71(3), 227-234.
  33. Sainju, U. M., Dris, R. & Singh, B. (2003). Mineral nutrition of tomato. Food, Agriculture & Environment, 1(2), 176-183.
  34. Salehi, R., Kashi, A., Lee, J. M., Babalar, M., Delshad, M., Lee, S. G. & Huh, Y. C. (2010). Leaf gas exchanges and mineral ion composition in xylem sap of Iranian melon affected by rootstocks and training methods. HortScience, 45(5), 766-770.
  35. Salehi-Mohammadi, R., Kashi, A., Lee, S. G., Huh, Y. C., Lee, J. M., Babalar, M. & Delshad, M. (2009). Assessing survival and growth performance of Iranian melon to grafting onto Cucurbita rootstocks. Korean J. Hortic. Sci. Technol, 27(1), 1-6.
  36. Samuels, A. L., Glass, A. D. M., Ehret, D. L. & Menzies, J. G. (1993). The effects of silicon supplementation on cucumber fruit: changes in surface characteristics. Annals of Botany, 72(5), 433-440.
  37. Sugiyama, M., Sakata, Y. & Ohara, T. (2006, August). The History of Melon and Cucumber Grafting in Japan. In XXVII International Horticultural Congress-IHC2006: International Symposium on Sustainability through Integrated and Organic, 767 (pp. 217-228).
  38. Tucker, M. (2004). Primary nutrients and plant growth. Essential plant nutrients, 126.
  39. Waling, I., Vark, W. V., Houba, G. & Van der lee, J. J. (1989). Soil and Plant Analysis, a series of syllabi. Part 7.Plant Anal Proced. Wageningen Agriculture University. Netherland.
  40. Wang, L. P., Guo, S. R., Sun, J., Tian, J., Yang, Y. J. & He, L. Z. (2012). Analysis of photosynthetic characteristics and key enzyme genes expression of carbon assimilation in cucumber by grafting onto salt-tolerant rootstock under iso-osmotic Ca (NO_3) _2 or NaCl stress. Journal of Nanjing Agricultural University, 3, 007.
  41. Xing, W. W., Li, L., Gao, P., Li, H., Shao, Q. S., Shu, S., ... & Guo, S. R. (2015). Effects of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under Ca (NO 3) 2 stress. Plant Physiology and Biochemistry, 87, 124-132.
  42. Yamamoto, Y., Hayashi, M., Kanamaru, T., Watanabe, T., Mametsuka, S. & Tanaka, Y. (1989). Studies on bloom on the surface of cucumber fruits, 2: relation between the degree of bloom occurrence and contents of mineral elements. Bulletin of the Fukuoka Agricultural Research Center, 9, 1-6.
  43. Yamasaki, A., Yamashita, M. & Furuya, S. (1994). Mineral concentrations and cytokinin activity in the xylem exudate of grafted watermelons [Citrullus lanatus] as affected by rootstocks and crop load. Journal of the Japanese Society for Horticultural Science (Japan).
  44. Yetisir, H., Özdemir, A. E., Aras, V., Candir, E. & Aslan, Ö. (2013). Rootstocks effect on plant nutrition concentration in different organ of grafted watermelon. Agricultural Sciences, 4(5), 230.
  45. Zhou, Y., Huang, L., Zhang, Y., Shi, K., Yu, J. & Nogués, S. (2007). Chill-induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto figleaf gourd. Annals of Botany, 100(4), 839-848.