بررسی تأثیر محلول‌پاشی عناصر سیلیسیم و پتاسیم بر برخی ویژگی‌های بیوشیمیایی و اکوفیزیولوژی دانهال‌های پستۀ رقم بادامی ریز زرند کرمان در شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه ولی‌عصر(عج)، رفسنجان

2 استادیار، دانشگاه ولی‌عصر(عج)، رفسنجان

3 دانشیار، دانشگاه ولی‌عصر(عج)، رفسنجان

چکیده

به­منظور بررسی تأثیر تیمارهای سیلیکات پتاسیم و سولفات پتاسیم بر ویژگی‌های رشدی دانهال­های پستۀ رقم بادامی ریز زرند کرمان در شرایط تنش شوری، پژوهشی به‌صورت فاکتوریل با سه عامل شامل دو سطح شوری از منبع NaCl (0 و 90 میلی­مولار)، سه سطح سیلیسیم از منبع سیلیکات پتاسیم (0، 50 و 100 میلی­گرم بر لیتر) و سه سطح پتاسیم از منبع سولفات پتاسیم (0، 1 و 2 درصد)، در قالب طرح کامل تصادفی با سه تکرار انجام شد. 45 روز پس از سبز شدن بذرها تنش شوری اعمال شد. محلول­پاشی با سیلیکات پتاسیم و سولفات پتاسیم یک هفته پیش از آغاز تنش شوری و یک هفته پس از آغاز تنش شوری بود. نتایج نشان داد که شوری آب موجب کاهش محتوای آب نسبی برگ، کارایی استفاده از آب، مجموع پروتئین­های محلول برگ و افزایش میزان نشت الکترولیت­ها، پرولین، قندهای محلول و ترکیب‌های فنلی برگ و گلایسین­بتائین برگ و ریشه شد. کاربرد سیلیکات پتاسیم و سولفات پتاسیم باعث افزایش معنی­دار محتوای آب نسبی برگ، کارایی استفاده از آب، مجموع پروتئین­های محلول، پرولین، قندهای محلول و ترکیب‌های فنلی برگ و گلایسین­بتائین برگ و ریشه و کاهش میزان نشت الکترولیت­های برگ در شرایط تنش شوری شدند. تیمار شوری در مقایسه با شاهد محتوای آب نسبی برگ را 52/31 در صد کاهش داده و نشت الکترولیت‏ها را 28/91 درصد افزایش داد درحالی‌که تیمار 50 میلی‏گرم بر لیتر سیلیکات پتاسیم و 2 درصد سولفات پتاسیم در شرایط شوری محتوای آب نسبی برگ را 67/51 درصد افزایش و نشت الکترولیت‏ها را 62/67 درصد کاهش داد. 

کلیدواژه‌ها


عنوان مقاله [English]

Study of foliar application effect of silicon and potassium elements on some biochemical and ecophysiological traits of Pistachio seedlings cv. Badami E-Riz Zarand Kerman under salinity stress

نویسندگان [English]

  • Maryam Ranjbar 1
  • Majid Esmaeilizadeh 2
  • Hamid Reza Karimi 3
  • Mohammad Hossein Shamshiri 3
1 M.Sc. Student, Vali-E-Asr University, Rafsanjan, Iran
2 Assistant Professor, Vali-E-Asr University, Rafsanjan, Iran
3 Associate Professor, Vali-E-Asr University, Rafsanjan, Iran
چکیده [English]

In order to study the effect of different amounts of potassium silicate and potassium sulfate on growth traits of pistachio seedlings cv. Badami-E-Riz Kerman, an experiment was done as factorial with three factors, including two levels of salinity as source of NaCl (0 and 90 mM), three levels of silicon as source of potassium silicate (0, 50 and 100 mgL-1) and three levels of potassium as source of potassium sulfate (0, 1 and 2%), in compeletely randomized design with three replications. 45 days after the emergence of seeds, seedlings were exposed to salt stress foliar application of potassium silicate and potassium sulfate, both a week before and after starting salinity stress. The results showed that salinity decreased leaf relative water content, water use efficiency, leaf total soluble protein and increased electrolytes leakage, proline, soluble sugars, phenolic compounds in leaf and glycine betaine in leaf and root. Foliar application of potassium silicate and potassium sulfate increased leaf relative water content, water use efficiency, leaf total soluble protein, proline, soluble sugars, phenolic compounds and glycine betaine in leaf and roots, and reduced electrolytes leakage under salinity conditions. The most effective treatments were 50 mgL-1 potassium silicate and 2% potassium sulfate.

کلیدواژه‌ها [English]

  • abiotic stress
  • Glycine betaine
  • Pistachio
  • Potassium Silicate
  • potassium sulfate
  • proline
  1. Ahmad, M., Hassen, F., Qadeer, U. & Aslam, A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6, 594-607.
  2. Akram, M. S., Ashraf, M. & Akram, N. A. (2009). Effectiveness of potassium sulfate in mitigating salt-induced adverse effects on different physio-biochemical attributes in sunflower (Helianthus annuus L.). Flora, 204, 471-483.
  3. Al-Aghabary, K., Zhu, Z. & Shi, Q. H. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and anti oxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrient, 27, 2101-2115.
  4. Alizadeh, A. (2003). Design ofirrigationsystems. University of Imam Reza.
  5. Bandani, M. & Abdolzadeh, A. (2007). Effects of silicon nutrition on salinity tolerance of Puccinellia distans (jacq.) parl. Journal Agriculture Science Nutrition Resour, 14, 111-119.
  6. Bradford, M. M. A. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye binding. Analytical Biochemistry, 72, 248-254.
  7. Bredemeier, C. & Mundstock, C. M. (2000). Regulation of nitrogen absorption and assimilation in plants. Journal Master List, 30, 365-372.
  8. Bybordi, A. (2013). Interactive effects of silicon and potassium nitrate in improving salt tolerance of wheat. Journal of Integrative Agriculture Advanced Online Publication, 13, 2095-3119.
  9. Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J. & Zhu, X. (2008). Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiologia Plantarum, 134, 324-333.
  10. Corrales, I., Poschenrieder, C. & Barcello, J. (1997). Influence of silicon pretreatment on aluminium toxicity.in maize roots. Plant and Soil, 199, 203-209.
  11. Cuin, T. A. & Shabala, S. (2007). Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant Cell Environment,30, 875-885.
  12. El-Lethy, S. R. Abdelhamid, M. T. & Reda, F. (2013). Effect of potassium application on wheat (Triticum aestivum L.) cultivars grown under salinity stress. Journal World Applied Sciences, 26, 840-850.
  13. FAO. (2012). Food outlook global market analysis. Food and Agriculture Organization of the United Nations.
  14. Fatemy, L. S., Tabatabaei, S. J. & Fallahi, E. (2009). The effect of silicon on the growth and yield of strawberry grown under saline conditions. Journal of Horticultural Sciences, 23, 88-95.
  15. Golldack, D., Quigley, F., Michalowski, C. B., Kamasani, U. R. & Bohnert, H. J. (2003). Salinity stress-tolerant and sensitive rice (Oryza sativa L.) regulate AKT1- type potassium channel transcripts differently. Journal of Plant Molecular Biology, 51, 71-81.
  16. Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil, 70, 303-307.
  17. Hajiboland, R. N., Aliasgharzade, S., Farsad, H. & Poschenrieder, C. H. (2009). Colonization with arbuscular mycorrhizal fungi improvas salinity tolerace of tomato plants. Plant Soil, 11, 249-255.
  18. Hojjat- Nooghi, F & Mozafari, V. (2012). Effects of calcium on eliminating the negative effects of salinity in pistachio (Pistacia vera L.) seedlings. Australian Journal of Crop Science, 6, 711-716.
  19. Huany, B. & Johnson, J. W. (1995). Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia. Annals of Botany, 75, 427-432.
  20. Hussein, M. M., El-Faham, S. Y. & Alva, A. K. (2012). Pepper plants growth, yield, photosynthetic pigments, and total phenols as affected by foliar application of potassium under different salinity irrigation water. Journal of Agricultural Sciences, 3, 241-248.
  21. Irigoyen, J. J., Emerich, D. W. & Sanchez-Diaz, M. (1992). Water stress induced changing concentrations of prolin and total soluble sugars in nodulated alfalfa (Medcago sativa) plants. Physiologia plantarum, 84, 67-72.
  22. Isfendiyaroglu, M. & Zeker, E. (2002). The relation between phenolic compound and seed dormancy in Pistacia spp. In: AKB. E. (ed.). 11 Grema Serr Pistachios and Almond. Chieres optins Mediterraneenes, 56, 232-277.
  23. Kanai, S., Ohkura, K., Adu-Gyamfi, J., Mohapatra, P., Saneoka, H. & Fujita, K. (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany, 58, 2917-2928.
  24. Karkanis, A., Bilalis, D. & Efthimiadou, A. (2011). Architectural plasticity, photosynthesis and growth responses of (Abutilon theophrasti) plants to warer stress in a semi arid environment. Australian Journal of Crop Science, 5, 369-374.
  25. Kaya, C., Kirnak, H. & Higgs, D. (2001). Effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). Journal of Plant Nutrition,24, 1457-1471.
  26. Kaya, C., Tuna, L. & Higgs, D. (2006). Effect of silicon on plant growth and mineral nutrition of maize grown under water stress condition. Journal of Plant Nutrition, 29, 1469-1480.
  27. Li, W., Ping, H. & Jiyun, J. (2009). Potassium influenced phenylalanine ammonia-lyase, peroxidases and polyphenol oxidases in Fusarium graminearum infected maize (Zea mays L.). Proceedings of the International Plant Nutrition, 6, 286-296.
  28. Maqsood, T., Akhtar, J., Farooq, M. R., Haq, M. A. & Saqib, Z. A. (2008). Biochemical attributes of salt tolerant and salt sensitive maize cultivars to salinity and potassium nutrition. Journal of Agriculture Sciences, 45, 1-5.
  29. Mengel, K. & Arneke, W. W. (1982). Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. Plant Physiology, 54, 402-408.
  30. Morshedi, A. & Farahbakhsh, H. (2010). Effects of potassium and zinc on grain protein contents and yield of two wheat genotypes under soil and water salinity and alkalinity stresses. Plant Ecophysiology, 2, 67-72.
  31. Nasseri, M., Aroiee, H., Nemati, S. H. & Kafi, M. (2012). Effect of salinity and silicon application on biomass accumulation, sodium and potassium content of shoots of fenugreek (Trigonella foenum- graceum L.). Journal of Water and Soil, 26, 508-514.
  32. Paquin, R. & Lechasser, P. (1979). Observations sur une method dosage de l proline libre dans les extraits de plantes. Journal of Botany, 57, 1851-1854.
  33. Ranjan, R., Bohra, S. P. & Jeet, A. M. (2001). Book of plant senescence. Jodhpur Agrobios New York, 18-42.
  34. Romero-Aranda, M. R., Jurado, O. & Cuartero, J. (2006). Alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Plant Physiology, 163, 847-855.
  35. Saida, C., Houria, B. & Mebarek, B. (2014). Interactive effects of salinity and potassium on physio-morphological traits of tomato (Lycopersicon esculentum Mill. var heintz). Agriculture and Biology Journal of North America, 10, 2151-7525.
  36. Sairam, R. K. & Srivastava, G. C. (2002). Changes in antioxidant activity in subcellular fraction of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897-904.
  37. Sakamoto, A. & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress. Plant Cell and Environment, 25, 163-171.
  38. Schaller, G. & Kieber, J. (2002). Ethylene. American Society Plant Biologists, 1-17.
  39. Soleimanzadeh, H., Habibi, D., Ardakani, M. R., Paknejad, F. & Rejali, F. (2010). Response of sunflower (Helianthus Annuus L.) to drought stress under different potassium levels. World Applied Sciences Journal, 8, 443-448.
  40. Tahir, M. A., Rahmatullah, A., Aziz, T., Ashraf, M., Kanwal, S. & Maqsood, M. A. (2006). Benefical effects of silicon in wheat under salinity stress. Pakistan Journal of Botany, 38, 1715-1722.
  41. Tajabadipur, A. (2004). Effect ofsoil application ofpotassium onthe relative tolerance ofthree varieties ofpistachio on water andsalinity stress. Ph.D. thesis, Department of soil science, College of Agriculture, Shiraz University, Iran.
  42. Tale Ahmad, S. & Haddad, R. (2011). Study of silicon effects on antioxidant enzyme activities and osmotic adjustment of wheat under drought stress. Journal of Genetics and Plant Breeding, 47, 17-27.
  43. Verma, S. & Dubeym, R. S. (2001). Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biology Plantarum, 1, 117-123.
  44. Wang, J. & Naser, N. (1994). Improved performance of carbon paste ampermeric biosensors through the incorporation of fumed silica. Electroanalysis, 6, 571- 575.
  45. Whitehouse, W. E. (1957). The pistachio nut a new crop for the western united states. Economic. Botany, 11, 281-321.
  46. Yin, L., Wang, S., Li, J., Tanaka, K. & Oka, M. (2013). Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiology Plant, 35, 3099-3107.
  47. Zuccarini, P. & Okurowska, P. (2008). Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. Journal of Plant Nutrition, 31, 497-513.