Study effect of vermicompost and biochar on growth, yield and water use efficiency of eggplant (Solanum melongena L.) in field condition

Mohsen Ebrahimi1, Mohammad Kazem Souri2, Amir Mousavi3 and Navazolah Sahebani4

1. Ph. D. Candidate, Faculty of Agricultural and Food Industries, Science and Research Branch, Islamic Azad University, Tehran, Iran
2. Assistant Professor, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
3. Associate Professor, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
4. Associate Professor, University College of Aboureihan, University of Tehran, Tehran, Iran

(Received: Aug. 20, 2020- Accepted: Oct. 24, 2020)

ABSTRACT

In order to investigate effect of two kinds of biochars (date palm and pistachio biochars) on yield and water use efficiency of eggplant in field condition a factorial experiment based on randomized complete block design in three replications was carried out. The first factor was vermicompost in two levels (0 and 1500 g/m²) and the second factor was biochar in three levels (0, 500 g/m² date palm and 500 g/m² pistachio biochar). Results showed that the highest fresh and dry weight of aerial and root was obtained in the combination treatment of vermicompost and date palm biochar. The highest amount of chlorophyll a and b belonged to vermicompost treatment. The effect of biochar and interaction effect of vermicompost and biochar on fruit number per plant was significant. The highest fruit number per plant was obtained in application of vermicompost and date palm biochar. Application of vermicompost lead to the highest mean fruit weight. The highest total yield (7233 g/plant) and water use efficiency (11.16 kg/m³) was observed in combination treatment of vermicompost and date palm biochar.

Keywords: Arial fresh weight, date palm biochar, fruit number per plant, fruit mean weight, pistachio biochar.

* Corresponding author E-mail: mk.souri1974@gmail.com
دانلود که بیچاره یک ماده اصلی کننده مفید برای بهبود و یوگیکه فیزیکی و شیمیایی خاک، مؤثر در حفظ ماده آلی خاک، افزایش بهرهوری کود استفاده‌شده و افزایش محصول به ویژه برای خاک‌های مناطق نیمه گرمسیری و گرمسیری که طولانی‌مدت کشت‌دانش، می‌باشد (Basso et al., 2013). طماطات نشنال داندن بیچاره سپر افزایش ظرفیت تهیه‌دار آب می‌شود (Sun et al., 2014). بیچاره آب قابل‌دسیرس در افزودن بیچاره به دیل تغییری است که بیچاره به دیل سطح ویژه بالایی که دارد در توزیع انداره دوات و تخلخل خاک ایجاد کرده است (Rodrigues et al., 2010). اثر مثبت بیچاره در منطقه گرمسیری بیشتر می‌باشد (Sohi et al., 2009). محصولات کشاورزی به‌عنوان یک اولویت تلقی‌ناورده هبسته درختان میوه از جمله بسته و درک خرما ایجاد نشده است. در حالت حاضر نه‌تک و نه تКО است استفاده مطلوبی از این ضایعات نیست. بلوک به‌دلیل سرزلند آنها توزیع آب‌گرم مدل‌های برنجی حیاتی ایجاد کرده است. طی سالهای اخیر استفاده از ضایعات کشاورزی در موارد متعددی گزارش شده است. از جمله این موارد می‌توان به تولید کمیسیون، بیچاره، آم، دی، اف و نتوان اشاره کرد.

پیچار زغال تهیه شده زیست‌نوده‌های گیاهی و ضایعات کشاورزی است که طی فرآیند ترمومیک‌سی با تنهالی می‌شود و (Pyrolysis) است که می‌تواند، این فرآیند سوخت کننده بر (Pyrolysis) است که می‌تواند، این فرآیند سوخت کننده بر (Pyrolysis) است که می‌تواند، این فرآیند سوخت کننده بر (Pyrolysis) است که می‌تواند، این فرآیند سوخت کننده بر (Pyrolysis) است که می‌تواند، این
Table 1. Some characteristics of date palm and pistachio biochar used in the experiment

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Date Palm</th>
<th>Pistachio</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>9.00</td>
<td>9.00</td>
</tr>
<tr>
<td>EC (DSm⁻¹)</td>
<td>7.50</td>
<td>29.70</td>
</tr>
<tr>
<td>N (%)</td>
<td>0.74</td>
<td>0.20</td>
</tr>
<tr>
<td>P (%)</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>K (%)</td>
<td>0.83</td>
<td>0.95</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>983.20</td>
<td>750.00</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>32.40</td>
<td>30.20</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>2.00</td>
<td>2.50</td>
</tr>
<tr>
<td>Mn (ppm)</td>
<td>139.30</td>
<td>150.00</td>
</tr>
</tbody>
</table>

From (Palanisooriya et al., 2019) (Li et al., 2018a, 2018b, Bagheri et al., 2020a, 2020b) (Semines, USA) (Hall et al., 1986) (Hill et al., 2018) (Palanisooriya et al., 2019),

- MSTATC = AGR and Excell = AGR.
- Semines, USA = AGR and Excell = AGR.
- Hall et al., 1986 = AGR and Excell = AGR.
- Hill et al., 2018 = AGR and Excell = AGR.
- Palanisooriya et al., 2019 = AGR and Excell = AGR.
- Li et al., 2018a, 2018b = AGR and Excell = AGR.
- Bagheri et al., 2020a, 2020b = AGR and Excell = AGR.

The characteristics of the date palm and pistachio biochars used in the experiment are shown in the table above. The pH, electrical conductivity (EC), nitrogen (N), phosphorus (P), potassium (K), iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) content were measured. The data shows that the date palm biochar has a higher pH, EC, and N content compared to the pistachio biochar. The pistachio biochar has a higher P content than the date palm biochar.

The results indicate that the date palm biochar is more suitable for use in agricultural applications due to its higher pH and EC values, which are beneficial for plant growth. The pistachio biochar, on the other hand, has a higher P content, which is important for nutrient retention and availability.

In conclusion, the use of date palm and pistachio biochars in agricultural applications can provide benefits such as improving soil structure, nutrient retention, and water management. Further research is needed to optimize the use of these biochars in specific agricultural settings.
Table 2. Results of variance analysis effect of vermicompost and biochar on some vegetative traits of eggplant.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df</th>
<th>Aerial fresh weight</th>
<th>Aerial dry weight</th>
<th>Root fresh weight</th>
<th>Root dry weight</th>
<th>Chlorophyl a</th>
<th>Chlorophyl b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replication</td>
<td>1</td>
<td>551250**</td>
<td>302818.00</td>
<td>15212.72**</td>
<td>2434.04**</td>
<td>9.39**</td>
<td>2.28**</td>
</tr>
<tr>
<td>Vermicompost</td>
<td>1</td>
<td>11250**</td>
<td>882.00**</td>
<td>39.39**</td>
<td>6.30**</td>
<td>0.01**</td>
<td>0.02**</td>
</tr>
<tr>
<td>Biochar</td>
<td>1</td>
<td>791250**</td>
<td>62034.00**</td>
<td>39.39**</td>
<td>6.30**</td>
<td>0.01**</td>
<td>0.02**</td>
</tr>
<tr>
<td>Error</td>
<td>10</td>
<td>200</td>
<td>15.17</td>
<td>0.86</td>
<td>0.14</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>CV (%)</td>
<td></td>
<td>0.61</td>
<td>0.60</td>
<td>0.41</td>
<td>0.41</td>
<td>3.91</td>
<td>4.46</td>
</tr>
</tbody>
</table>

ns, **: Non-significantly difference and significantly difference at 5 and 1% of probability levels, respectively.

Figure 1. Mean comparison interaction effect of vermicompost and biochar on aerial fresh weight of eggplant ($V_1 = V_2$, $B_1 = B_2$, $V_2 = V_2$, $B_1 = B_2$).

Figure 2. Mean comparison interaction effect of vermicompost and biochar aerial dry weight of eggplant ($V_1 = V_2$, $V_1 = V_2$, $B_1 = B_2$, $B_1 = B_2$).
(Lehmann & Joseph, 2009) با توجه به طور قابل توجهی موجود افزایش کربن آلی و حاصلخیزی خاک افزایش رشد و نحوه و عملکرد محصول (Sok et al., 2010) و افزایش ماده خشک می‌گردد.

اثر ورم کمپست و بیچار بر میزان کلروفیل a و b معنی‌دار بود. اما اثر متقابل ورم کمپست و بیچار معنی‌دار نبود (جدول ۲). با اساس نتایج مقایسه میانگین‌ها بین دو میزان کلروفیل a و b در تیمار (بیچار) و افزایش محصول مشاهده شد که ۱/۳ برابر تیمار ساده (عدد کاربرد ورم کمپست) بود (شکل ۳ و ۴). همچنین بر اساس نتایج مقایسه میانگین‌ها بین دو میزان کلروفیل a و b در تیمار مصرف بیچار خمای ساده (عدد کاربرد بیچار) و ۱/۳ برابر بیچار ساده بود. همچنین در بررسی مقدار کلروفیل b در تیمار کاربرد بیچار شده مشاهده شد که ۱/۳ برابر تیمار ساده (بدون کاربرد بیچار) و ۱/۳ برابر بیچار ساده بود.

به نظر می‌رسد کاربرد ورم کمپست و بیچار، از طریق افزایش مواد آلی خاک و فراهمی پهتر عناصر غذایی برای گیاه، باعث استабیلیت ویژگی‌های تولید کند. رشد گیاهان در بستر‌های حاوی بیچار رشد خوبی دارد که می‌تواند به علت بهبود شرایط فیزیکی و شیمیایی خاک زیست‌روش باشد. نتایج کاهش مقاومت خاک به رشد ریشه در این مبحث های کشت دیده می‌شود (Altland, 2006; Chan et al., 2008; Zhang et al., 2010) محققان (2010) افزایش رشد در بستر‌های بیچار را به افزایش فراهمی عناصر غذایی و بهبود ویژگی‌های فیزیکی خاک مانند کاهش چگالی ظاهری نسبت دادند. همچنین بیچار موجب افزایش خصوصیات شیمیایی خاک مانند گروه‌های عمیق و ظرفیت تبادل کاتیونی (Kharea et al., 2013) می‌شوند و دسترسی به عناصر غذایی افزایش یافته و گیاه رشد بهتری می‌تواند داشته باشد.

شکل ۳ مقایسه میانگین اثر ورم کمپست و بیچار (V₁ = بدون ورم کمپست، V₂ = با ورم کمپست).

شکل ۴ مقایسه میانگین اثر ورم کمپست و بیچار (V₁ = بدون ورم کمپست، V₂ = با ورم کمپست).

شکل ۳ Figure 3. Mean comparison effect of vermicompost on chlorophyll a of eggplant (V₁ = without vermicompost, V₂ = with vermicompost).

شکل ۴ Figure 4. Mean comparison effect of vermicompost on chlorophyll b of eggplant (V₁ = without vermicompost, V₂ = with vermicompost).
در تحقیقی کشت کاربرد بیوجار بر خرما باعث افزایش کروفلیف از a و b در خریده شد (Bagheri et al., 2020a). بیوجار با افزایش میزان کروفلیف، موجب بهبود فتوستنی، افزایش مواد هیدروکربنی و تولید زیستنده بیشتر می‌شود که ازجمله تأثیر آن افزایش سطح و تعداد برگ و دنبال آن افزایش وزن نتایج جنگلداران شامل دسته بیوجار و دسر متقابل ورمی‌کمپست و بیوجار بر تعداد میوه در بوته معنی‌دار بود، اما اثر ورمی‌کمپست معنی‌دار نبود (جدول 3). بیشترین تعداد میوه در بوته در کاربرد ورمی‌کمپست و بیوجار خرما بهتر بود. آمد (شکل 5). کاربرد تعداد 1500 گرم ورمی‌کمپست در متر مربع و 500 گرم بیوجار خرما در متر مربع می‌تواند به برخورداری در بوته یکی از اجزای اصلی موجب بهبود بوته و دسته بیشتری باشد. در کاربرد اکثریت میوه‌های بوته زیادتری باشد و وزن کمندی خوشه‌رساخت و با پریپاتوری برخوردار خواهد بود. بنابراین از نظر صفحه نیز کاربرد توأم ورمی‌کمپست و بیوجار نسبت به عدم کاربرد آن با یکتی داشت.

جدول 3. نتایج تجزیه واریانس اثر ورمی‌کمپست و بیوجار بر برخی صفات بادنجان.

<table>
<thead>
<tr>
<th>شاخص نتایج</th>
<th>تعداد عناصر</th>
<th>میانگین</th>
<th>فاصله میانگین</th>
<th>دامنه</th>
<th>درصد CV</th>
<th>درصد CV</th>
<th>درصد CV</th>
<th>درصد CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>2.89</td>
<td>10633.56</td>
<td>3.18</td>
<td>1.84</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>فاصله میانگین</td>
<td>0.29</td>
<td>2341.56</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>دامنه</td>
<td>0.61</td>
<td>811881.06</td>
<td>0.44</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>درصد CV</td>
<td>0.01</td>
<td>816.22</td>
<td>0.25</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>درصد CV</td>
<td>0.01</td>
<td>206656.89</td>
<td>0.12</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>درصد CV</td>
<td>0.01</td>
<td>2058923.56</td>
<td>0.11</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>درصد CV</td>
<td>0.04</td>
<td>110801.06</td>
<td>0.06</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>درصد CV</td>
<td>0.01</td>
<td>0.44</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*، **: Non-significantly difference and significantly difference at 5 and 1% of probability levels, respectively.

شکل 5. مقایسه میانگین اثر متقابل ورمی‌کمپست و بیوجار بر تعداد میوه در بوته بادنجان (V1= بدون کاربرد ورمی‌کمپست، V2= بدون کاربرد بیوجار، V3= با کاربرد بیوجار، V4= با کاربرد ورمی‌کمپست).
بررسی نتایج تجربه واریانس اثر ورمی کمپوست و بیوجار بر وزن متوسط میوه معنی‌دار بود، اما اثر منفی ورمی کمپوست و بیوجار معنی‌دار نبود (جدول ۳). کاربرد ۱۵۰۰ گرم ورمی کمپوست در متر مربع باعث کاهش پستانه‌ای به بیشترین وزن متوسط میوه شد. کاهش وزن متوسط میوه در تیمار عدم مصرف ورمی کمپوست به‌دست آمد (شكل ۶). بیشترین وزن متوسط میوه مربوط به تیمار کاربرد بیوجار خرمه و کمترین وزن متوسط میوه در تیمار عدم مصرف بیوجار به‌دست آمد (شكل ۷)。

(Akhtar et al., 2014).

Figure 6. Mean comparison effect of vermicompost on fruit mean weight of eggplant (V۱= without vermicompost, V۲= with vermicompost).

Figure 7. Mean comparison effect of biochar on fruit mean weight of eggplant (B۱= without biochar, B۲= date palm biochar, B۳= pistachio biochar).
برخی محققین گزارش داده که کاربرد تیمارهای مختلف بیوجار (از صفر تا پنج درصد وزن خاک گلدان) بر گیاهگی گره‌گری کمیابی کردن افزایش عملکرد کل میوه را در بی داشته باشد که این نتایج این تحقیق مطابقت داشت (2014). برخی تحقیقات قبل از افزایش عملکرد چربی با کاربرد بیوجار را به افزایش رفتار عناصر غذایی و بهبود ویژگی‌های فیزیکی خاک مانند کاهش چگالی ظاهری نسبت داده‌اند (Chan et al., 2008, Zhang et al., 2010).

\[\text{V1B3} \] = بدون ورمی‌کمپوست و بیوجار، [V2B3] = ورمی‌کمپوست و بیوجار.

\[V \times B \] = شکل 7 مقایسه شش روش مختلف ورمی‌کمپوست و بیوجار بر عملکرد کل بانان (V1= بدون ورمی‌کمپوست و بیوجار، V2= ورمی‌کمپوست و بیوجار).

\[V \times B \] = شکل 8 مقایسه سه متغیر اثر متقابل ورمی‌کمپوست و بیوجار بر عملکرد کل بانان (V1= بدون ورمی‌کمپوست و بیوجار، V2= ورمی‌کمپوست و بیوجار).
شکل 9. مقایسه میانگین اثر متقابل ورمی کمپوست و بیوجار بر کارایی مصرف آب بادنجان (V1= без کاربرد ورمی کمپوست، V2= بدون بیوجار، V3= بدون بیوجار، V4= کاربرد بیوجار، V5= کاربرد دیترسیمی کمپوست).

Figure 9. Mean comparison interaction effect of vermicompost and biochar on water use efficiency of eggplant (V1= without vermicompost, V2= with vermicompost, B1= without biochar, B2= date palm biochar, B3= pistachio biochar).
REFERENCES

